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Introduction 
For the sake of clarity, the compact matrix notations are introduced so that any vector quantity 𝒂 = 𝑎𝑥𝒊 + 𝑎𝑦𝒋 + 𝑎𝑧𝒌 is 

written as a column matrix {𝒂} and to each vector quantity the skew symmetric matrix [𝒂] is associated [5]. This allows 

writing the scalar product of two vectors {𝒂} and {𝒃} as 𝒂 ∙ 𝒃 = {𝒂}𝑇{𝒃} and the vector product as  𝒂 ∧ 𝒃 = [𝒂]{𝒃}. 
We refer to Figure1 and we define three coordinate systems. The coordinate systems (𝑜, 𝑥, 𝑦, 𝑧) and (𝑂, 𝑋, 𝑌, 𝑍) are both 

inertial coordinate systems fixed in space and are parallel to each other. The origin of the coordinate system (𝑂, 𝑋, 𝑌, 𝑍) is 
located at the mean free surface with the 𝑍 axis being perpendicular to it. The coordinate system (𝐺, 𝑥′, 𝑦′, 𝑧′) is fixed to 

the body so that the two sets of coordinates (𝑜, 𝑥, 𝑦, 𝑧) and (𝐺, 𝑥′, 𝑦′, 𝑧′) are related to each through the transformation 

matrix [𝑨]. With these notations any vector quantity {𝒖} defined in (𝑜, 𝑥, 𝑦, 𝑧) can be expressed as a function of its value 

in (𝐺, 𝑥′, 𝑦′, 𝑧′) by the following relation: 
 

{𝒖} = [𝑨]{𝒖′} (1) 
 

 
 

Figure 1: Generalized motion of the floating body. 

Body dynamics 
The total displacement {𝒖} of the point attached to the body is decomposed into its global rigid body part {𝒖𝑟} and its 

generalized deformation part {𝒖𝑓} so that the instantaneous position in the earth fixed coordinate system becomes: 
 

{𝒓} = {𝒓𝐺} + {𝒖} = {𝒓𝐺} + [𝑨]{𝒖
′} = {𝒓𝐺} + [𝑨]({𝒖𝑟

′ } + {𝒖𝑓
′ }) (2) 

 

In the general case the body deformation vector {𝒖𝑓
′ } can be arbitrarily large but here the linear motion is assumed and the 

deformation vector is represented as a sum of the 𝑁𝑓 modal contributions described by their space dependent mode shapes 

𝒉𝑓𝑖
′ (𝒖𝑟

′ ) = ℎ𝑓𝑖𝑥′
′ 𝒊′ + ℎ𝑓𝑖𝑦′

′ 𝒋′ + ℎ𝑓𝑖𝑧′
′ 𝒌′ and their time dependent modal amplitudes 𝜒𝑓𝑖(𝑡). We write: 

{𝒖𝑓
′ (𝒖𝑟

′ , 𝑡)} =∑𝜒𝑓𝑖(𝑡){𝒉𝑓𝑖
′ (𝒖𝑟

′ )}

𝑁𝑓

𝑖=1

= [𝓱𝑓
′ ]{𝝌𝑓} (3) 

where [𝓱𝑓
′ ] is the 3 × 𝑁𝑓 matrix which columns contain the 3 components of the mode shape vectors and {𝝌𝑓} is the vector 

of the corresponding modal amplitudes. With these notations the instantaneous position vector of the point attached to the 

body, becomes: 

{𝒓} = {𝒓𝐺} + [𝑨]({𝒖𝑟
′ } + [𝓱𝑓

′ ]{𝝌𝑓}) (4) 
 

It is important to note that the instantaneous position of the center of gravity is obtained by considering the rigid body 

motions only and that the elastic modes are defined in the local coordinate system (𝐺, 𝑥′, 𝑦′, 𝑧′).  
The application of the D’Alambert principle of the virtual work within the Lagrangian formalism leads to the following 

linear dynamic motion equation of the flexible floating body [5]: 
 

[

[𝒎] [0] [0]

[0] [𝑰𝜃𝜃
′ ] [𝑰𝜃𝑓

′ ]

[0] [𝑰𝜃𝑓
′ ]

𝑇
[𝑰𝑓𝑓
′ ]

] {

{𝒂𝐺}

{�̇�′}

{�̈�𝑓}

} = {

{𝑭}

{𝑴′}

{𝑭𝑓} − [𝑲]{𝝌𝑓}
} (5) 

 

where [𝑲] is the structural stiffness matrix for the flexible modes, if existing. 

We note that the motion equation is expressed in the body fixed coordinate system, the mass matrix [𝒎] is the diagonal 

matrix with the elements equal to body mass and other inertia terms are given by the following expressions: 
 



 
Abstract for 35th IWWWFB, Seoul, South Korea, 2020 

 

[𝑰𝜃𝜃
′ ] =∭ [𝒖′]𝑇[𝒖′]𝑑𝑚

∀𝐵

     ,     [𝑰𝜃𝑓
′ ] =∭ [𝒖𝑟

′ ]𝑇[𝓱𝑓
′ ]𝑑𝑚

∀𝐵

     ,     [𝑰𝑓𝑓
′ ] =∭ [𝓱𝑓

′ ]
𝑇
[𝓱𝑓

′ ]𝑑𝑚
∀𝐵

 (6) 

 

We note that the above equation of motion is valid for arbitrarily large rigid body motions and small flexible motions. 

The external forces are assumed to act at the discrete points on the body and we denote each of them by {�̃�𝑗
′ }. In the present 

context of the freely floating flexible body, it exist two types of the external forces: the gravity and the pressure forces: 
 

{�̃�𝑗
′ } = {�̃�𝑗

𝑔′
} + {�̃�𝑗

𝑝′
} (7) 

 

We note that the gravity force remains constant in the earth fixed coordinate system and the discrete pressure forces are 

obtained by integrating the pressure over the element of the wetted body surface, and we can write: 
 

{�̃�𝑗
𝑔′
} = −𝑚𝑗𝑔[𝑨]

𝑇{𝒌}     ,     {�̃�𝑗
𝑝′
} = −𝜚𝑔𝑃{�̃�′}𝑑𝑆𝑗 (8) 

 

where 𝑃 is the external pressure and {�̃�′}𝑑𝑆𝑗  is the oriented element of the wetted surface. 

With these notations, the instantaneous rigid body forces, rigid body moments and the generalized modal forces become: 
 

{𝑭′} = ∑{�̃�𝑗
′ }

𝑁

𝑗=1

     ,     {𝑴′} =∑[𝒖′]{�̃�𝑗
′ }

𝑁

𝑗=1

     ,     𝐹𝑓𝑖 =∑{�̃�𝑓𝑖
′ }

𝑇
{�̃�𝑗
′ }

𝑁

𝑗=1

 (9) 

Linearization 

The first step in the linearization procedure is to assume the rigid body motions to be small i.e. of the same order as the 

flexible ones which basically means that the transformation matrix [𝑨] is developed in the following form: 
 

[𝑨] = 1 + [𝜽] (10) 
 

In parallel the Taylor series expansion is used to express the instantaneous value of any physical quantity, scalar �̃�′ or vector 
{�̃�′}, as a function of its value at rest. We write: 
 

�̃�′ = (1 + 𝒖𝑓
′∇)𝑞′   ,      {�̃�′} = (1 + 𝒖𝑓

′∇){𝒒′}   ,      𝒖𝑓
′∇= 𝑢𝑓𝑥′

′ 𝜕

𝜕𝑥′
+ 𝑢𝑓𝑦′

′ 𝜕

𝜕𝑦′
+ 𝑢𝑓𝑧′

′ 𝜕

𝜕𝑧′
 (11) 

 

In particular this means that we can write for the mode shape vector {�̃�𝑓𝑖
′ } the following development: 

 

{�̃�𝑓𝑖
′ } = (1 + 𝒖𝑓

′∇){𝒉𝑓𝑖
′ } = {𝒉𝑓𝑖

′ } + [∇𝒉𝑓𝑖
′ ]{𝒖𝑓

′ } (12) 
 

Furthermore, in order to describe the instantaneous body deformations in a convenient form it is convenient to introduce 

the notion of the deformation gradient [𝑭] as follows: 
 

[𝑭] = [𝑰] + [∇𝒖𝑓
′ ] (13) 

 

where [∇𝒖𝑓
′ ] denotes the displacement gradient tensor. 

This allows writing the instantaneous normal vector in the following form: 
 

{�̃�′}𝑑𝑆 = ‖𝑭‖([𝑭]−1)𝑻{𝒏′}𝑑𝑆 = (1 + ∇𝒖𝑓
′ − [∇𝒖𝑓

′ ]
𝑇
) {𝒏′}𝑑𝑆 + 𝑂(𝒖𝑓

′2) (14) 

Generalized description of the body motions/deformations 

In the linear case, it is convenient to rewrite the rigid body motions in the generalized modal form. We write: 

{𝑹𝐺} + [𝜽]{𝒖𝑟
′ } = ∑𝜒𝑖

𝑟(𝑡){𝒉𝑟𝑖
′ (𝒖𝑟

′ )}

6

𝑖=1

     ,     {𝒓} = {𝒓0} + [𝓱
′]{𝝃} (15) 

where {𝑹𝐺} denotes the translation of the center of gravity and the matrix [𝓱′] is the global mode shape matrix with the 

dimensions 3 × (6 + 𝑁𝑓) where the first six columns contain the rigid body modes and the remaining columns contain the 

deformable modes. Similarly, the vector {𝝃} is the vector of the modal amplitude where the first 6 elements represents the 

rigid body translations and the rotations, and the remaining elements are the amplitudes of the deformation modes. 

Hydrostatic restoring 

Once the velocity potential calculated, the evaluation of the linear dynamic pressure forces is rather straightforward, and 

here below we concentrate on the hydrostatic restoring part which is induced by the hydrostatic pressure and the gravity. 

After some manipulations the following expressions are obtained: 

ℱ𝑖
ℎ𝑠 = −𝜚𝑔∬ [𝜁𝑣{𝒉𝑖

′}𝑇 + 𝑍 ({𝒉𝑖
′}𝑇 (∇𝒖𝑓

′ − [∇𝒖𝑓
′ ]
𝑇
) + {𝒖𝑓

′ }
𝑇
[∇𝒉𝑖

′]𝑇)] {𝒏′}𝑑𝑆
𝑆𝐵

   

   

ℱ𝑖
𝑔
= ∑−𝑚𝑗𝑔 ({𝒉𝑖

′}𝑇[𝜽] + {𝒖𝑓
′ }
𝑇
[∇𝒉𝑖

′]𝑇) {𝒌}

𝑁𝑚

𝑗=1
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where 𝑁𝑚 is the total number of the mass points, and 𝜁𝑣  denotes the vertical displacement of the point attached to the body: 

 

𝜁𝑣 = ∑ 𝜉𝑖{𝒉𝑖
′}𝑇{𝒌}

6+𝑁𝑓

𝑖=1

= ∑ 𝜉𝑖ℎ𝑖𝑧′
′

6+𝑁𝑓

𝑖=1

 (16) 

 

The elements of the restoring matrix can be deduced in the form: 

 

𝐶𝑖𝑗
ℎ𝑠 = −𝜚𝑔

{
 
 

 
 ∬ ℎ𝑗𝑧′

′ {𝒉𝑖
′}𝑇{𝒏′}𝑑𝑆

𝑆𝐵

, 𝑗 = 1,6

∬ [ℎ𝑗𝑧′
′ {𝒉𝑖

′}𝑇 + 𝑍 ({𝒉𝑖
′}𝑇 (∇𝒉𝑗

′ − [∇𝒉𝑗
′]
𝑇
) + {𝒉𝑗

′}
𝑇
[∇𝒉𝑖

′]𝑇)] {𝒏′}𝑑𝑆
𝑆𝐵

, 𝑗 > 6
 (17) 

   

𝐶𝑖𝑗
𝑔
= ∑𝑚𝑛𝑔{𝒌}

𝑇 {
[∇𝒉𝑗

′]{𝒉𝑖
′} , 𝑗 = 1,6

[∇𝒉𝑖
′]{𝒉𝑗

′} , 𝑗 > 6

𝑁

𝑛=1

 (18) 

 

There has been lot of discussions in the past concerning the correct expression for the hydrostatic restoring of the deformable 

bodies. Some discussions related to this work were presented in [2]. In that paper exactly the same formulation was obtained 

by three very different methods, but some problems were reported regarding its application to the evaluation of the internal 

loads. The fundamental difference in between the present formulation and the formulations proposed in [2] is related to the 

proper accounting for the coordinate systems in which the body deformations are defined and in which the forces are 

expressed. The main point is that both the normal vector and the mode shape vector do not change in the body fixed 

coordinate system while the gravity force vector does, and this fact seems to not be properly accounted for in [2]. We also 

note that some other formulations for hydrostatic restoring were proposed in the literature [3,4,6] but we do not discuss 

theme here even if some of them give the results for the internal loads which are similar to the present formulation. 

Numerical results 

The case of the hyper elastic barge is chosen. The detailed description of the model is presented in [3] and here we just 

briefly present the results for the RAO of the horizontal bending moment in oblique waves. The results clearly shows the 

difference in between the two approaches and demonstrates the validity of the new approach. 

 

  
 

Figure 2: Hyper elastic barge in oblique waves and the RAO’s of the horizontal bending moment at midship section. 

(Elastic Old denotes the results obtained using the old formulation for hydrostatic restoring) 

 

In order to demonstrate the elegance of the generalized modal approach the case of the crane operations is considered. We 

refer to Figure 3 where the basic configuration is presented. 

 

 
Figure 3: Floating body with attached pendulum. 

 

A more classical way of solving the problem was described in [1] where the multibody interaction combined with constraint 

equations was used. This leads to rather complex final expressions for the dynamic motion equation. Within the generalized 
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modal approach the description of the problem becomes extremely simple. Indeed, the overall problem is formulated as a 

single body problem with 8 degrees of freedom: 6 overall rigid body modes of motion (with pendulum mass included and 

treated as fixed) and 2 rotational modes describing the motion of the pendulum mass (with amplitudes 𝛼 and 𝛾). The 

definition of the rigid body mode shapes is the classical one and the pendulum mode shapes are defined by: 

 

{𝒉7
′ } = [𝒋′]({𝒖𝑟

′ } − {𝒖𝑃
′ }) = −𝑙{𝒊′} , [∇𝒉7

′ ] = [𝒋′]  

     
{𝒉8

′ } = [𝒊′]({𝒖𝑟
′ } − {𝒖𝑃

′ }) = 𝑙{𝒋′} , [∇𝒉8
′ ] = [𝒊′]  

 

The direct application of the above described generalized modal method leads to very few modifications of the classical 

rigid body mechanics. The only changes concern the inertia and the hydrostatic restoring matrix which changes as follows: 

 

[𝓜] =

[
 
 
 
 
 
 
 

ℳ𝑖𝑗

−𝑙𝑚 0
0 𝑙𝑚
0 0
0 −𝑙𝑚𝑧𝑇𝐺

−𝑙𝑚𝑧𝑇𝐺 0
𝑙𝑚𝑦𝑇𝐺 𝑙𝑚𝑥𝑇𝐺

−𝑙𝑚 0 0 0 −𝑙𝑚𝑧𝑇𝐺 𝑙𝑚𝑦𝑇𝐺
0 𝑙𝑚 0 −𝑙𝑚𝑧𝑇𝐺 0 𝑙𝑚𝑥𝑇𝐺

𝑙2𝑚 0
0 𝑙2𝑚 ]

 
 
 
 
 
 
 

, [𝓒] = 𝑔

[
 
 
 
 
 
 
 

𝒞𝑖𝑗

0 0
0 0
0 0
0 𝑙𝑚
𝑙𝑚 0
0 0

0 0 0 0 𝑙𝑚 0
0 0 0 𝑙𝑚 0 0

𝑙𝑚 0
0 𝑙𝑚]

 
 
 
 
 
 
 

 

 

where ℳ𝑖𝑗 and 𝒞𝑖𝑗 are the classical inertia and hydrostatic restoring matrices with the pendulum mass considered as fixed. 

The remaining hydrodynamic coefficients (added mass, damping and excitation) are non-zero for the first 6 modes only 

and they are evaluated exactly in the same way as for the single rigid body case. Two type of methods i.e. the classical one 

(denoted Old) and the generalized modal one (denoted New) are compared in Figure 4 for a typical case. We can observe 

a typical effect of the pendulum and we can also see that the two classes of results are identical. 

 

  
 

Figure 4: Sway (left) and roll (right) motion of the floating body with attached pendulum. 

Discussions & conclusions 

We have discussed here a so called generalized modal approach for solving the arbitrarily linear dynamics of the deformable 

floating body. New formulation for the hydrostatic restoring was proposed and validated so that some inconsistencies from 

the past are corrected. Furthermore, it was shown that the generalized modal approach is not limited to flexible bodies but 

represents a very elegant and general method for solving the different mechanical problems in seakeeping. This was 

demonstrated on the case of lifting operations and it was shown that very simple modifications of the existing seakeeping 

code are necessary to properly solve the problem. The critical point in the analysis appears to be the correct definition of 

the different mode shapes and the evaluation of the corresponding generalized inertia and hydrostatic restoring matrices. 
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