
(Abstract for the 35th International Workshop on Water Waves and Floating Bodies, Seoul, Korea, 2020)

A modified Benjamin-Feir index for crossing sea states

Shuai Liu∗, Xinshu Zhang†,
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration (CISSE) Shanghai, 200240, China

1 Introduction

The wave systems characterized by two different spectral peaks with different propagation directions, also
known as crossing sea states, have been regarded as a situation that may increase the effects of modulational
instability. The nonlinear interactions of two wave systems appear to be a cause of the rogue wave occurrences.
Although most of the available studies have focused on sea states characterized by single-peaked spectra, there
is a significant percentage of sea states that are more complex than single-peaked spectral seas. There are
many evidences that unusual and extreme wave phenomenons do occur in crossing seas. The famous Draupner
wave is found to be generated in crossing seas according to the hindcast date from the European Centre for
Medium-Range Weather Forecasts (Adcock et al., 2011).

Here, we shall limit attention to the crossing seas consisted of two waves with nearly the same peak frequen-
cy. For nearly unidirectional crossing seas consisted of two identical wave systems, the modulational instability
has been investigated with the framework of nonlinear Schrodinger (NLS) equations. Onorato et al. (2006)
studied the modulational instability of two wave systems with the same frequency but different propagation
direction using coupled nonlinear Schrodinger (CNLS) equations derived from Zakharov equation. Their results
suggested that the existence of another wave system can result in an increase of the instability growth rates and
the enlargement of instability region, and more rogue waves are expected in crossing sea states with crossing
angles less than about 70◦. Extension of the obtained results in Onorato et al. (2006) to the more general cases
of two-dimensional perturbations has been performed b Shukla et al. (2006). Onorato et al. (2010) presented a
further detailed derivation of the CNLS equations and a discussion of the coefficients in front of the dispersive
and nonlinear terms with the support of direct numerical simulations. The result indicated that crossing angles
between 20◦ and 60◦ are the most probable for establishing a freak wave sea. These theoretical results based
on CNLS equation have been validated by Toffoli et al. (2011), who performed both laboratory experiments
and numerical simulations to study the effect of crossing angle on the extreme events. Based on hindcast data
and numerical simulations, Bitner-Gregersen & Toffoli (2014) found that the maximum kurtosis occurs for the
crossing angle about 40◦, independent on the wave directional spreading. A more recent experimental study
reported in Luxmoore et al. (2019) shows that the third-order nonlinearity was more affected by varying the
directional spreading of the components instead of the crossing angles between components. They also found
that the kurtosis, which quantitatively describes the third-order nonlinearity, can be estimated quite well from
the directional spreading using an empirical relationship based on the two-dimensional Benjamin-Feir index
(BFI2d), proposed by Mori et al. (2011).

In the present paper, we derived a modified coupled two-dimensional Benjamin-Feir index (CBFI2d) for
crossing seas to estimate the third-order nonlinearity effects. The prediction from CBFI2d was validated based
on numerical simulation using a higher-order spectral method as well as previous experimental data.

2 Derivation of a modified Benjamin-Feir index for crossing seas

Benjamin-Feir index (BFI) was an measurement of the importance of modulational instability for For narrow-
banded long-crested waves (see Janssen, 2003). Mori et al. (2011) suggested an extension of the BFI, the
two-dimensional Benjamin-Feir index (BFI2d), for waves with significant directional spread. A robust relation
between BFI/BFI2d and the kurtosis was built up for both long-crested and short-crested seas (Mori & Janssen,
2006; Mori et al., 2011; Luxmoore et al., 2019):

Kur =
π√
3
BFI2(2d) + 24ε2 + 3, (1)

Where Kur is the kurtosis value and ε is wave steepness.
To describe the evolutions of two crossing waves with identical and symmetrical wavenumber, the coupled

nonlinear Schrodinger (CNLS) equations have been derived from Zakharov equation based under the assumption
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that both wave systems are narrow-banded in Onorato et al. (2006). Considering the stability analysis of
perturbations along x axis, in a frame of reference moving with the group velocity the CNLS equations are
given by:

∂A

∂t
− iα

∂2A

∂x2
+ i
(
ξ|A|2 + 2ζ|B|2

)
A = 0, (2)

∂B

∂t
− iα

∂2B

∂x2
+ i
(
ξ|B|2 + 2ζ|A|2

)
B = 0, (3)

where A and B are the complex amplitudes for two wave system, respectively. The corresponding wavenumber
are kA = (k, l), kB = (k,−l), symmetrically propagating about the x-axis at angle ±θ. The coefficients in
CNLS equations are defined as follows:

α =
ω(κ)

8κ4

(
2l2 − k2

)
, (4)

ξ =
1

2
ω(κ)κ2, (5)

ζ =
ω(κ)

2κ

(
k5 − k3l2 − 3kl4 − 2k4κ+ 2k2l2κ+ 2l4κ

−2k2 − 2l2 + kκ

)
, (6)

where κ =
√
k2 + l2, and ω is the corresponding angular frequency. To investigate analytically the crossing

system further, we make the hypothesis that the evolutions of two envelope A and B are the same. The
equations (2) and (3) are reduced to:

∂A

∂t
+ i

1

8

ω(κ)

κ2
β
∂2A

∂x2
+ i

1

2
ω(κ)κ2(1 + γ)A|A|2 = 0. (7)

The new coefficients are given by:

β = k2 − 2l2, (8)

γ =
2k5 − 2k3l2 − 6kl4 − 4k4κ+ 4k2l2κ+ 4l4κ

(k − 2κ)κ
. (9)

Following Serio et al. (2005), we rewrite the equation in non-dimensional form by introducing the following
non-dimensional quantities:

A′ =
A√
2a

, x′ = ∆kx, t′ =
ω(κ)∆k2β

8κ2
t, (10)

where ∆k denotes the spectral bandwidth and a corresponds to the wave amplitude. The non-dimensional
CNLS equations become (the primes have been now omitted for brevity):

∂A

∂t
+ i

∂2A

∂x2
+ i

(
2
√
2κa

∆k/κ

)2
γ + 1

β
A|A|2 = 0. (11)

Based on the ratio of the nonlinear and dispersive term, we introduce a coupled Benjamin-Feir index (CBFI)
for crossing sea states:

CBFI =
2
√
2κa

∆k/κ

√
γ + 1

β
. (12)

Figure 1 illustrates the variation of the coefficients as a function of propagation direction θ. Note that the
crossing angle is equivalent to 2θ. Considering the definition of BFI, this equation is rewritten as:

CBFI = BFI

√
γ + 1

β
. (13)

For more general two-dimensional cases, we obtained:

CBFI2d = BFI2d

√
γ + 1

β
, (14)

The CBFI2d allows to evaluate the kurtosis value which is regarded as an important indicator of rogue wave
occurrence, based on the linear relationship between kurtosis value and squared Benjamin-Feir index.
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Figure 1: The variation of the coefficients in CBFI2d as a function of propagation direction θ. Note that the
crossing angle β is equivalent to 2θ.

3 Examination of CBFI2d for random crossing waves

The purpose of the following tests is to demonstrate if the predictions of kurtosis by CBFI2d are valid. We
conducted numerical simulations using a higher-order spectral method (Dommermuth & Yue, 1987; West et al.,
1987) of two identical crossing waves characterized each by JONSWAP frequency spectra (peak period Tp = 1
s, significant wave height Hs = 0.06 m, i.e. wave steepness is fixed ε = 0.12) and cosine-squared directional
distribution (see Xiao et al., 2013). The crossing angle between two wave systems is fixed β = 40◦. To
include a wider range of sea states, different enhancement factor (γ = 2, 5 and 8) and spreading bandwidth
(Θ = 5◦, 15◦, 30◦ and 60◦) are considered here. For long-crested waves (small Θ) with narrow-band frequency
spectra (large γ), the kurtosis value is relatively larger and the rogue wave is more likely to be formed in such
sea state . with the increases of directional spreading width and frequency width, the kurtosis value is reduced
due to the suppression of four-wave resonant interactions (Onorato et al., 2009). Numerical simulations were
carried out in a two-dimensional domain of 32λp × 32λp with spatial mesh of 1024 × 1024 nodes, where λp is
the wavelength corresponding to the peak period.

Besides, the CBFI2d is also examined using available experimental data. Toffoli et al. (2011) conducted
a laboratory experiment of two crossing long-crested waves with varied crossing angle β = 10◦, 20◦, 30◦, 40◦

and fixed wave steepness ε = 0.13 to investigate the effect of crossing angle. Recently, to study the effect of
directional spreading, Luxmoore et al. (2019) carried out a series of experiments on directional crossing waves.
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Figure 2: The maximum observed kurtosis in the total duration versus the directional spreading at the same
time/position.

Figure 2 shows the maximum observed kurtosis in the total duration versus the directional spreading at
the same time/position. Experimental results as well as present HOS results for the cases are presented. The
theoretical prediction based on BFI2d (see Mori et al., 2011) is plotted for comparison. Our results show that in
the crossing seas with relatively broad-banded directional spreading (Θ = 15◦, 30◦ and 60◦) the kurtosis value
can be estimated quite well from directional spreading based on BFI2d, which is in consistent with the finding
in Luxmoore et al. (2019). However, in the nearly long-crested cases (e.g., the experiment by Toffoli et al.



(2011) and present simulation with Θ = 5◦) it is found that the kurtosis is underestimated by the theoretical
prediction. This is attributed to that, the classical BFI2d cannot capture the effect of crossing angle reasonably,
which is more significant in nearly long-crested crossing waves.
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Figure 3: Dependence of kurtosis on CBFI2d and BFI2d. Black solid line corresponds to the theoretical prediction
based on CBFI2d (1). Dashed line represents the linear regression results Kur=0.29×CBFI2d

2+3.06 (R2=0.67).

Figure 3 illustrates the dependence of kurtosis on CBFI2d and BFI2d for crossing seas. Black solid line
corresponds to the theoretical prediction. For all the cases including both experimental and our numerical
results, with CBFI2d the scatter in the data is greatly reduced, resulting in a clear and almost linear parameter-
ization of kurtosis and CBFI2d

2 over a wide range of crossing sea states. Based on linear regression analysis, the
semi-empirical formula is found to Kur=0.29×CBFI2d

2+3.06 with the related coefficient R2=0.67. This result
confirms that CBFI2d gives a satisfactory indicator of third-order nonlinearity. To the authors’ knowledge,
it is the first time to develop a modified Benjamin-Feir index for two-component crossing seas and validate
its relationship with the kurtosis value. More comprehensive analyses and discussion will be presented in the
workshop.
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