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The ice cover near the polar regions has been strongly affected as a result of global warming, particularly on
its margins, such that it consists of a mixture of discrete ice floes and open water. The ocean waves propagating
in such regions contribute not only to the break-up of the ice, but also stimulate their drift. Therefore, in addition
to melting, surface waves play a determining role in shaping the marginal ice zones [1].

The drift motion and hydroelastic response of a set of floating elastic ice sheets to incident nonlinear waves in
shallow water is studied by use of the Level I Green-Naghdi (GN hereafter) equations. The set of N deformable ice
sheets is presented by thin elastic plates of variable properties. The resulting governing equations together with
the appropriate boundary and matching conditions are solved in two-dimensions by the finite difference method.
Free surface elevation and ice sheet deformations are calculated. The effect of multiple plates on the wave-induced
loads and velocity field is investigated. Drift motion of the ice sheets is determined by calculating the instantaneous
wave-induced force on the bodies, and by solving Newton’s second law. Only horizontal motion is considered.

Problem formulation. The plane flow of inviscid fluid of constant depth h is considered in the
Cartesian coordinate system Oxy with the horizontal axis lying on the undisturbed free surface and
vertical axis directed upwards. Incident waves propagate in the positive x—direction and excite the
motion of a set of floating deformable sheets being initially at rest. The sketch of the problem is shown
in Fig. 1. The ice sheets are homogenous and have arbitrary length L;, mass per unit width m; and
flexural rigidity Dy, where subscript £ = 1,2,..., N indicates each ice sheet.

¢ 19
1
Ll AL] L2 LN—] Ly T
i T - WAMVAM?
E) i E 77(%0 ! C(IJ’] . E ' ' ' _8
‘ ‘ ' ' i ‘ i ‘ 5
: N RI ; RI Rl ORI . RI . RI .\ R |\ RI |38
¢ H f 0 0 ] 1 1 ]
3 0 0 0 ! i 1 1 | )
: i Lol o] R . o ¢ 2l | s

T/ 777777777 777777777777 7777,777777777777777

Fig. 1. Schematic of the problem of nonlinear wave interaction with N number of deformable plates of
arbitrary size and location. The plates may have horizontal motion due to the wave loads. Also shown in this
figure are the RI and RII regions referred to in the text.

In the context of using the GN equations, the problem is best studied by dividing the fluid domain
into two types of regions. Region I (RI) is formed by a flat floor at the bottom and by a free surface at
the top, where the fluid pressure is the constant atmospheric pressure. Region II (RII) is formed by a
flat floor at the bottom and by an elastic plate at the top, where, as opposed to Region RI, the fluid
pressure is unknown. Solutions, obtained in each region, are connected through the proper matching
conditions at the interfaces.

The governing equations for the motion of the fluid in RI are provided by the Level I GN theory for
a flat and stationary seafloor [2, 3]. Using density, p, gravitational acceleration, g, and fluid depth h,
the Level I GN equations can be written in dimensionless and compact form as [4]:

. 1 . ..

ne+ A +nule =0, dt+ne =200+ (1 +n)iel, (1)

where 7 is the surface elevation measured from the still-water level and u is the horizontal particle
velocity. Subscripts after comma indicate differentiation, and superposed dots are the two-dimensional
total derivatives. Similarly, the governing equations for the coupled motion of the fluid and the elastic



sheet in RII Regions can be written as:

where ( is the plate deformation, hy = 1 — dj is dimensionless fluid depth under the k-th plate. The
wave-induced pressure p under the plate is given by the thin elastic plate theory [5], usually adopted to
model ice floes and very large floating structures (VLFS), when they interact with surface waves:

p= mkc,tt + Dk(,:):xmc + my. (3)

Here, the flexural rigidity is defined as Dy = Ek52/12(1 — V,%), with 0, E, and v being the thickness,
Young’s modulus and Poisson’s ratio of the k-th plate, respectively. Equations (1)—(3) are solved for free
surface elevation 7, plate deformation (, horizontal component of fluid velocity u and pressure under the
plates p.

Ertekin [6] provided explicit relations for the vertical velocity of the fluid along the water column
and pressure on the bottom (y = —1), given as:
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In order to obtain continuous solution, suitable matching conditions at the leading (z = a;,%) and
trailing (x = :U;‘g) edges of each floating sheet must be specified. Since the elastic sheets are floating
freely, the bending moment and the shear stress should vanish at the edges, i.e. Dyn o = Dingze = 0.
Moreover, we assume no gap between the bottom surface of the sheets and the top surface of the fluid
layer, and hence the mass continuity equation (2) together with vanishing bending moment condition
imply:
3<,9:U,:cz + (hk + C)u,rzz =0, 4C,mu,m:r + (hk + C)u,rzzm + C,zatmtu = 0. (5)

In the approach discussed above, the floating elastic surfaces cause discontinuities of the fluid layer
and velocity at the interfaces between regions. Consequently, the derivatives of n and u are also discon-
tinuous. Appropriate jump conditions should be called to provide the matching of the solution at the
interfaces between regions. The theory demands the conservation of mass and momentum (achieved by
continuity of bottom pressure across the discontinuity curves).

On the left side of the domain, numerical wavemaker capable of generating GN solitary and cnoidal
waves is installed. On the right side of the domain, Orlanski condition is used to minimise the wave
reflection back to the domain.

The system of equations of the entire domain, subject to appropriate boundary conditions in each
region, along with the matching and jump conditions, is solved simultaneously for the unknowns. Spatial
discretization of the equations is carried out by a central-difference method, second order in space, and
time marching is obtained by use of the modified Euler’s method. The system of equations are solved by
use of a Guassian Elimination method. Hayatdavoodi & Ertekin [7] applied successfully the same model
to nonlinear problem of the wave scattering by a submerged rigid plate.

In two-dimensions, the horizontal wave-induced force on the floating plate is calculated by considering
the pressure differential at the leading and trailing edges of each plate

Fi(t) = paf, t) — p(af, ). (6)

We note here that since the plate is thin, the two-dimensional horizontal force is the force per unit width
(into the page) and per unit thickness, and thus has the same dimension as pressure. The force Fj, has
positive and negative components. Drift motion of the floating ice sheets is determined by solving the
following equation of motion:

myaks = Fi(t), (7)

where ay, 4 is the instantaneous horizontal acceleration of k-th plate. Spatial location of each plate is
determined by integrating the horizontal acceleration twice.



Discussion of results. Results of the level I GN model for wave interaction with N number of floating
and deformable ice sheets are presented here. The results include plate deformations, time series of wave
induced forces, and variation of the forces with wave conditions. In these preliminary cases shown here,
we assume that the plates are fixed in their horizontal locations.

Figure 2 shows velocity vectors of fluid particles plotted on contours of fluid velocity module
(u? + vz)l/ 2 in case of interaction of a solitary wave with two plates, floating at a short distance
AL =5 from each other, at three successive time moments. Small-amplitude leading waves propagate
with higher speed along the elastic surfaces, and hence the fluid domain feels the wave motion long before
the wave itself reaches the end of the second plate. These elastic waves cause greater wave attenuation
in a longer plate with higher rigidity. Another contribution to the wave attenuation is due to the effect
of multiple plates (see [8]).
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Fig. 2. Vector field and module contours of dimensionless fluid velocity for the interaction of a solitary wave
(A = 0.25) with the set of two plates with the same properties (L = 30, my = 0.1, Dy = 5) separated by
the fluid gap (AL = 5).

Figure 3 shows the interaction of a cnoidal wave with a set of three elastic plates of the same properties
for two values of plate rigidity. Also shown in Fig. 3 are the time series of the wave-induced horizontal
cnoidal forces on these deformable ice sheets. The amplitudes of plates deformation and horizontal force
reduces downwave. The higher rigidity D; of each plate contributes to the higher wave attenuation by
the floating system and to the lower drift of its elements.

Figure 4 shows the variation of the peak cnoidal wave horizontal force on the ice sheets F,j with
the incoming wave length A and wave height H for the cases of a single plate and two plates located at
different distances AL from each other. The effect of multiple plates is greater for shorter distance. The
first plate in the group of plates experiences greater drift force than a single plate of the same properties
if the distance is small. For larger distance, the second plate has less impact on the first plate and
experiences less horizontal force itself. Figure 4 also shows that drift force varies almost linearly with the
wave height and slight deviation of force from the straight line in the case of two plates can be observed.

More detailed discussion of results, including the interplay between of each plate in more complex
plate systems and the horizontal mean motion of the plates, will be presented at the workshop.
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Fig. 3. Surface elevation and plate deformation for the interaction of the cnoidal wave (H = 0.2, A = 5)
with a set of three identical plates (L = 3, my = 0.01), equally spaced, having the rigidity of (a) Dy = 3 and
(b) Dy, = 0.1 at time t = 200. (c) Time series of horizontal force acting on each plate in the set for different
values of rigidity Dy. The peak F;~ of horizontal force Fy is indicated in the figure.
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Fig. 4. Variation of the peak of cnoidal wave horizontal force on floating ice sheets with wave length and
wave height, for two configurations of a single plate (L = 5, m = 0.01, D = 0.1) and two identical plates of
the same properties. In sub-plots (a) and (b), the distance between the two plates is AL = L/2, and in (c)
and (d) AL = L.
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