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This study is concerned with a vertical impact of a rigid body onto a floating ice. The problem is
unsteady, two-dimensional and coupled. The hydrodynamic loads and elastic ice response are deter-
mined at the same time. The ice deflection is described by the equation of Euler beam with constant
thickness. In contrast to many other studies of ice response to impact on it, we do not assume the
impact loads but calculate them as part of the solution together with the region of contact between
the impacting rigid body and the elastic ice plate. It is known that such a contact region may consist
of several intervals of contacts, which are determined by the condition that the surface of the rigid
body is above the deformed ice plate at any time instant after the impact. The contact may occur at
separate points within some simplified models of elasticity. The problems with concentrated unknown
loads and inequalities for elastic deflections are challenging both theoretically and computationally.
A practical approach to such problems is to introduce an elastic layer between the impacting body
and the ice, see [1]. This layer can model either some physical properties of the ice surface as in
[1] or be considered as a way of regularization of problems with concentrated loads, or as a penalty
method to satisfy the inequality concerning the positions of the body surface and the floating ice plate.

To keep focus on the elastic impact model, we consider a simplified configuration with water of infinity
depth, y < −hi, bounded by two vertical walls at x = ±L. An elastic plate of a thickness hi is floating
on the water surface without gaps between the plate and the walls, see figure 1. The edges of the
plate can slide freely along the walls. The interval y = 0, −L < x < L, corresponds to the initial
position of the upper surface of the ice plate. The ice plate is covered by an elastic layer of constant
thickness he. The reaction force of the elastic layer is a given function of the current local thickness of
the layer. The body is of parabolic shape with radius of curvature R. Initially, t = 0, the rigid body
touches the upper surface of the elastic layer at a single point y = he, x = 0. Then the body instantly
starts to move downwards at a constant speed V pushing the elastic layer and the ice plate into the
water. The position of the body surface at time t is described by the equation y = x2/(2R) +he−V t,
−L < x < L.

Fig. 1 Vertical impact of a rigid body onto a floating elastic plate between two vertical walls:

(a) Initial position of the body and notation, (b) Sketch of the elastic plate deflection.



The problem is studied within the linear theory of hydroelasticity of potential flows. The ice plate
deflection, w(x, t), satisfies the Euler beam equation
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= p(x, 0, t)− Pe(x, t) (−L < x < L, t > 0), (1)

where m is the mass of the beam per unit length, m = ρihi, ρi is the ice density, E is the Young
modulus of the ice, J = h2i /12, p(x, 0, t) is the hydrodynamic pressure acting in the lower surface of
the ice plate, Pe(x, t) is the reaction force of the elastic layer, w(x, t) is positive upwards. Initially the
ice plate is at rest with

w(x, 0) = 0,
∂w

∂t
(x, 0) = 0. (2)

The sliding conditions at the edges of the plate read
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= 0 (x = ±L, t > 0). (3)

The hydrodynamic pressure at the ice/water interface is given by the linearised Bernoulli equation,

p(x, 0, t) = −ρϕt(x, 0, t)− ρgw(x, t) (−L < x < L, t > 0), (4)

where ρ is the water density, g is the gravitational acceleration, and ϕ(x, y, t) is the velocity potential of
the flow under the ice. The velocity potential is the solution of the following boundary-value problem,

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0 (−L < x < L, y < 0),

∂ϕ

∂y
=
∂w

∂t
(x, t) (y = 0),

∂ϕ

∂x
= 0 (x = ±L, y < 0),

∂ϕ

∂y
→ 0 (y → −∞). (5)

We are searching for a bounded solution of the problem (5) in the flow region, y < 0. Note that the
potential does not decays at the infinity in this problem. It is known that a solution of the problem
(5) exists only if ∫ L

−L
w(x, t)dx = 0 (t > 0), (6)

which comes from the mass conservation law. The reaction force of the elastic layer, Pe(x, t), in (1) is
modelled by

Pe(x, t) = Kf(δ), δ(x, t) =
he − h(x, t)

he
, h(x, t) =

x2

2R
+ he − V t− w(x, t), (7)

where h(x, t) is the local thickness of the elastic layer at time t, δ(x, t) is the relative compression of
the elastic layer, and K is the rigidity of the material of the elastic layer. The function f(δ) is zero,
where δ ≤ 0, linear for small positive δ, and tends to infinity as δ → 1− 0. In the present simulations,
we take f(δ) = δ/(1 − δ). Integrating the inequality h(x, t) ≥ 0 in x along the ice plate and using
(6), we find the duration of the impact stage, t ≤ he/V + L2/(6RV ). The computations below are
performed for the shorter interval, 0 < t < L2/(6RV ), which is independent of the thickness he of
the elastic layer. The strain ε(x, t) of the upper surface of the ice plate due to the plate bending is
calculated by the formula ε(x, t) = −0.5hiwxx(x, t). Positive strain implies that this part of the upper
surface of the ice is in tension, which could lead to cracking of ice if the strain is greater than the
so-called yield strain εY , see [2] where εY = 8 × 10−5. If he = 0 and w(x, t) = x2/(2R) − V t in the
contact region, then ε = −hi/(2R) there. For example, for R = 10m and hi = 50cm, this estimate
gives ε = 0.025 in the contact region, which is much greater than the yield strain of the ice. The
presence of the elastic layer on the top of the floating ice reduces the strains but not significantly.



The ice deflection and the flow under the ice are symmetric in the present formulation. The problem
of vertical impact on ice is solved by the normal mode method. The symmetric ice deflection is sought
in the form

w(x, t) =
∞∑
n=1

an(t)ψ)n(x), ψn(x) = cos(λnx), λn = πn/L, (8)

where the coefficients an(t) are to be determined. The deflection (8) satisfies the edge conditions (3)
and the equality (6) for any an(t), n ≥ 1. The hydrodynamic problem (5) with account for (8) has
the solution

ϕ(x, y, t) = ϕ0(t) +
∞∑
n=1

1
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ȧn(t)eλnyψn(x) (|x| < L, y < 0), (9)

where ϕ0(t) is defined by the reaction load Pe(t). Equations (8), (9) and the beam equation (1)
together with the orthogonality of the normal modes ψn(x) provide the following equations for the
coefficients an(t), n ≥ 1,

än + ω2
nan = Pn(t) (t > 0), ȧn(0) = an(0) = 0, (10)

where
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, (11)

Pe(x, t) is calculated by (7) and (8). Note that Pn(t) depends nonlinearly on the coefficients an(t). The
system of the ordinary differential equations (10) with (7), (8) and (11) is truncated and integrated in
time by using the fourth-order Runge-Kutta scheme in the dimensionless variables. The dimensionless
variables are denoted by tilde,

x = Lx̃, t = tsct̃, w = wscw̃(x̃, t̃), tsc =
1

ω1
, wsc =

K

ω2
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. (12)

The relative compression of the elastic layer, see the definition of δ(x, t) in (7), is given now by

δ(x, t) = d1w̃(x̃, t̃) + d2t̃− d3x̃3, d1 =
wsc
he
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Non-trivial impact conditions are expected for d1, d2, d3 = O(1). The system (10) for the dimensionless
coefficients ãn(t̃) = an/wsc has the form
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The dimensionless time step of integration is taken to be smaller than 1/20 of the dimensionless pe-
riod of the last mode, ψNmod

, retained in the series (8) and the system (14). The integrals in (14)
are evaluated numerically. The interval of integration [0, 1] is divided into 1000 subintervals. Linear
approximations of f(δ(x̃, t̃)) in each subinterval and for each time step are used.

The results of numerical simulations are shown in figure 2 for the rigidity of the elastic layer
K = 8 MPa, thickness of the layer he = 2 cm, radius of the rigid body R = 10 m, speed of im-
pact V = 5 m/s, thickness of the ice plate hi = 50 cm, length of the plate L = 6 m, the Young
modulus of the ice E = 4.2× 109 Pa, density of ice ρi = 917 kg/m3, density of water ρ = 1000 kg/m3,
gravity acceleration g = 9.81 m/s2. The dimensionless duration of the impact stage is 4.74 with the
time scale tsc equal to 0.025 s. The distributions of strains, loads, and deflections are saved with the
dimensionless step 0.2 from t̃ = 0 to t̃ = 4.6. The strains are calculated by the formula

ε(x, t) = εsc

Nmod∑
n=1

n2ãn(t̃) cos(λnx), εsc = π2wschi/(2L
2), (15)



where εsc = 0.79 in the present impact conditions. Note that the scale of the elastic strains and
the calculated strains are bigger than the yield strain εY of ice. These numerical results should
be considered as illustrative. Calculations were performed with Nmod = 10, 20, 40, 60. The strains
are most sensitive to the number of retained modes. The strains calculated with 40 and 60 modes
were found to be almost identical. The numerical dimensional results with Nmod = 60 are shown
in figure 2 for the end of the impact stage. The ice deflection is very close to the position of the rigid
body in the interval |x| < 3.5 m, see figure 2(a) but they are not equal to each other. The ice plate
is displaced upwards towards the body, see figure 2(b), outside the contact intervals. The intervals of
the elastic layer compression can be recognised in figure 2(c) as the intervals of positive loads Pe(x, t).
The strains, see figure 2(d), are large for the present impact conditions. This means that the ice plate
is expected to crack shortly after the beginning of the impact. The maximum strain in the ice at
t̃ = 0.2 is already equal to 0.008 and is achieved at x = 0. The strains in the contact intervals can
be estimated by assuming that the ice deflection follows the shape of the impacting body. This gives
ε = 0.025, see above, which well corresponds to the calculated strains in figure 2(d).

Fig. 2 Vertical impact of a parabolic body, yb(x, t) = x2/(2R)− V t, onto a floating elastic plate between two
vertical walls: (a) Relative positions of the body surface and the elastic ice plate at t∗ = 3.8tsc,

(b) Deflection of the ice plate, (c) Reaction force of the elastic layer, and (d) Strains

on the upper surface of the ice plate for t/tsc = 3.8(1), 4.0(2), 4.2(3), 4.4(4), 4.6(5).
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