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Introduction

Thanks to third-order approximation of gravity waves, it has been shown in the past that the interactions
of two or several wave trains introduce a phase velocity change which occurs for each wave component due
to the presence of the other components. This result established by Longuet-Higgins and Phillips [1] was
used in the context of wave-structure interaction by Molin et al. [2]; assuming tertiary interactions between
the incident field and the perturbated one by the structure (diffraction-radiation). Since then more research
efforts have been made to better understand tertiary wave run-up in regular and irregular waves [3][4][5].
Some of these works have been presented and discussed on many occasions during the last previous workshops
[2][6][4].

The main purpose of the present work is to introduce a numerical model accounting for third-order inter-
actions in linear diffraction-radiation analysis. Where the methodology consists in coupling the existing
parabolic model introduced by Molin et al [7] with a 3D BEM seakeeping code. Furthermore, the model is
extended to irregular waves. The obtained numerical results show an excellent agreement with model tests in
both regular and irregular waves, allowing for better estimation of wave elevation compared to linear theory.

Tertiary interactions between two plane waves

Here we recall the third-order theory of Longuet-Higgins and Phillips in deep water. We consider two regular
waves of different frequencies ω1 and ω2 and relative heading β. First order potential φp1q and free-surface
elevation ηp1q are given by:

ηp1q “ A1 cospk1x´ ω1tq `A2 cospk2x cosβ ` k2y sinβ ´ ω2tq (1)

φp1q “
A1g

ω1

ek1z sinpk1x´ ω1tq `
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ek2z sinpk2x cosβ ` k2y sinβ ´ ω2tq (2)

With A1 and k1 (respectively A2 and k2) being the amplitude and wave number of the ω1-wave (respectively
the ω2-wave ). Longuet-Higgins and Phillips have showed, after a lengthy perturbation analysis and retaining
pk1x´ ω1tq terms only, that the free surface condition satisfied by third-order potential φp3q can be written
as [1]:
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Where the right hand side includes two terms: the first one resulting from cross-interaction between the
two waves and the second one resulting from self-interaction of the ω1-wave. F is the so-called interaction
function defined by Molin et al. [3] which depends on both wave frequencies ω1 and ω2, and the relative
heading β:
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With:

k` “
a

k1 ` k2 ` 2k1k2 cosβ α` “
ω2pω1 ` ω2q

gk` ´ pω1 ` ω2q2
p1 ´ cosβq

k´ “
a

k1 ` k2 ´ 2k1k2 cosβ α´ “
ω2pω2 ´ ω1q

gk´ ´ pω1 ´ ω2q2
p1 ` cosβq

(5)
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Figure 1 shows F variation with the heading β for different frequency ratios α “ ω1{ω2 . It is noticeable
that tertiary interaction becomes particularly significant when ω2 Ñ ω1 and reach its a maximum at β “ π.
On the other hand, no interaction effects can be seen around β « π{2 (more precisely β=92.03˝).
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Figure 1: Interaction function F vs. β for different frequency ratios

Finally, the wave number change of the ω1-wave induced by the ω2-wave is then given by:

k
p2q
1 “ A2

2k
2
1k2Fpω1, ω2, βq (6)

Accounting for tertiary interactions in diffraction-radiation problem

In linear potential flow theory, the total velocity potential φtot is decomposed into an incident part φI and a
perturbated part φP including the diffraction potential φD and the 6 rigid motions radiation potentials φRj :

φtot “ φI ` φP “ φI ` φD ´ iω

6
ÿ

j“1

ξjpωqφRj (7)

Where ξj is the complex amplitude of the jth rigid motion. For a regular wave of frequency ω, linear incident
potential is defined as:

φI “ ´
ig

ω
AIepkz`ikx´iωtq (8)

In order to take into account third order effects, Longuet Higgins and Phillips theory [1] is applied to the
incident and perturbated fields. In this case, tertiary interactions are considered at the same frequency ω by
introducing a modified incoming field φ̃I as follow [7]:

φ̃I “ ´
ig

ω
Apǫ2x, ǫyqerk`ǫ2kp2qpǫ2x,ǫyqsz`irkp1´ǫ2qx´ωts (9)

Where the amplitude A and the wave number kp2q are local in space, as a consequence of the spatial variation
of the diffraction-radiation field. The Laplace condition gives the parabolic equation satisfied by A:

2ik
BA

Bx
`

B2A

By2
` 2k4

”

AP 2
Fpω, ω, βq `AI 2

´ }A}2
ı

A “ 0 (10)

With AP px, yq and βpx, yq are the amplitude and direction (both real) of the perturbated field, considered
locally as a plane wave. }.} is used to denote the complex modulus of A.

This parabolic equation is solved in 2D rectangular domain limited by tow fictive walls at y “ ˘b, similar
as a wave tank [7]. This implies no-flow condition at the walls and allows to expand A as a series of basis
functions in y direction. Therefore, the integration is performed in x direction only starting from x “ ´l
where it is assumed that A “ AI (no tertiary effects) and continued about 2-3 wavelengths past the structure.

To extend this theory to irregular waves, we consider a linear wave spectrum S with N frequency components.
The linear incident field (velocity potential φI and free surface elevation ηI) is expressed as:

ηI “
N
ÿ

n“1

ηI
n “

N
ÿ

n“1

AI
ne

ipknx´ωnt`θnq (11)
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N
ÿ

n“1

φI
n “

N
ÿ

n“1

´
ig

ωn

AI
ne

knz`ipknx´ωnt`θnq (12)

With θn the wave phase, ωn the wave frequency and kn the corresponding wave number. AI
n is the wave

amplitude given by AI
n “

a

2Spωnq∆ω, ∆ω being the frequency step.

In the same way as the regular wave case, Longuet-Higgins and Phillips theory [1] is applied to each frequency
component ωn. The modified incident potential of nth component is taken as follow:

φ̃I
n “ ´

ig

ωn

Anpǫ2
nx, ǫnyqerkn`ǫ2

nkp2q
n pǫ2

nx,ǫnyqsz`irknp1´ǫ2

nqx´ωnt`θns (13)

Here, ǫn “ knA
I
n is the wave steepness of the nth frequency component and k

p2q
n its wave number modification.

The latter results from 3rd order interactions with the (N-1) other incident wave components and all the N
perturbated wave components (diffraction+radiation). With this in mind, we can write:
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ÿ
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2
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Where AP
m and βm are respectively the amplitude and heading of the mth perturbated field component,

idealized locally as a plane wave. Finally, Laplace condition yields to N parabolic equations to solve:
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2
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p2q
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Taking An “ AI
np1 ` anq [7], we obtain:
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´

i

2kn

B2an

By2
´ iknpǫ2

n ` knInqan “ iknpǫ2
n ` knInq (16)

an is then expanded as a series of basis functions using the no-flow condition at the walls y “ ˘b:

an “
8
ÿ

l“0

αnlpxq cospλlpy ` bqq “
8
ÿ

l“0

αnlpxqψlpyq (17)

With λl “ lπ{p2bq. The projection over this basis functions gives the non-linear system of equations to solve:
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l
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(18)
Where δij is the Kronecker symbol. It is important to note that In terms depend on the incident field
amplitudes }Am} of all other frequency components. Therefore, parabolic equation (15) should be solved
iteratively for all frequencies at each x value. To sum up, the iterative procedure can be described as follow:
Starting from linear incident potential φI , the perturbated potential φP is obtained through diffraction-
radiation computation. Then based on this φP , the parabolic equation is solved to calculate φ̃I which is
used, once again, as an input for diffraction-radiation analysis to get a new φP . This operation is repeated
until convergence of φ̃I .

Preliminary results and discussions

Our numerical model is used to investigate wave run-up upon rectangular barge in regular/irregular waves
[4]. The experiments have been performed in the Deepwater Wave Basin at Shanghai Jiao Tong University.
The wave basin is 50 m long and 40 m wide. The water depth was set to 10 m. The barge model consists
of two identical fixed boxes each 3.333 m long and 0.767 m wide. Gap resonance effects being ignored here,
we can consider the model as one single box 1.601 m wide. The draught was 0.185 m.

Irregular waves were generated based on white noise spectrum with significant wave height of 41.7 mm. For
numerical simulations, a flat spectrum has been used with frequency ranging from 0.3 Hz to 1.7 Hz. It must
be pointed out that for irregular wave case, incident wave amplitudes depend on spectrum discretization.
Therefore, convergence tests with respect to the number of frequency components N need to be performed.
Figure 3 shows total wave elevation at the box front face center (indicated by a red mark in figure 2) with
RAOs given for 5 frequencies using different discretizations. We can conclude that convergence can be
achieved within N “17.
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Figure 2: Experimental setup

Figure 4 compares total wave elevation at the same location; where the RAOs from experiments have been
obtained using spectral analysis of measured signals over individual windows [4]. For more clarity, mean and
range boundaries of the these RAOs have been plotted instead of representing all of them. A good agreement
with experiments has been found. Again, as demonstrated by Molin for regular waves, accounting for tertiary
wave effects in wave-body interactions provides better estimation of wave elevation compared to linear theory,
even in irregular waves. More detailed results will be presented and discussed at the workshop.
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Figure 3: Sensitivity to spectrum discretization, total
wave elevation RAO at the box front face center
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Figure 4: Comparison of total wave elevation RAO at
the box front face center
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