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Introduction

This abstract presents our progress in the development of a fully nonlinear potential flow solver cap-
able of modelling wave-structure and wave-bottom interactions. The numerical method is based on
a finite difference method with a o-transform in the vertical direction, as presented in Bingham and
Zhang (2007), and boundary conditions are imposed in a robust way as described in Engsig-Karup
et al. (2009). Wave-structure interaction is implemented using the Immersed Boundary Method (IBM)
shown in Kontos et al. (2016), where the body boundary condition is satisfied by a Weighted Least
Squares approximation, as described in Lindberg et al. (2014). The current work details the introduc-
tion of a semi-Lagrangian point tracking the body-free-surface intersection, which improves robustness
and extends the capabilities of the solver to increasingly nonlinear wave-structure interaction. The
accuracy and convergence of the scheme are validated by comparison with the second-order wave
generation theory of Schéffer (1996).

Formulation

The problem is defined in terms of the velocity potential ¢, and can be expressed in terms of a moving
frame of reference with velocity U. This is necessary if forward motion of a ship is to be considered.
In the general (3D) case, a Cartesian coordinate system (x,z) = (z,v, 2z) is defined with the z-axis
directed vertically upward from the mean water level at z = 0, and the z-axis aligned with the direction
of forward motion. The initial-boundary-value problem is defined by

V2 + ¢ =0, in Q, (1)

n +Vn(Vo —wVn —U) =, on z =1, (2)

bt + Vo (;V& — U) — %@2(1 + V2n) = —gn, on z=m, (3)
¢+ VhVep =0, on z = —h, (4)

On = Vi, on Sy, (5)

n(x,0), ¢(x,0) given. (6)

Here V = (0;, 0y) is the horizontal gradient operator, U = (U, 0,0) is the forward velocity vector, g is
the gravitational constant, and x represents a horizontal vector. Equation (1) is the Laplace equation,
Eq.’s (2) and (3) are the kinematic and dynamic free surface boundary conditions, respectively. These
are expressed in terms of surface quantities &(X,t) = ¢(x,7,t) and W = ¢;|,—,. Equation (4) is the
impermeable bottom condition, and Eq. (5) imposes a no-flux condition through the body surface
Sy, with V,, the body velocity. In this work the initial conditions are still water, and wave motion is
imposed via the moving body. Subscripts represent partial derivatives in the given direction. In the
current abstract only 2D forced motion problems are considered.

Numerical Method

The efficiency of finite difference methods on structured grids is utilised by mapping the time-
dependent physical domain to a time-invariant computational domain with a o-transformation. This
transformation requires a smooth and C?-continuous free surface over the entire domain, implying that



an artificial free surface must be created in the interior of any surface-piercing body. The classical
explicit four-stage, fourth-order Runge-Kutta method is used to time-step the free surface boundary
conditions, and a 9th-order, 11-point Savitsky-Golay smoothing filter is applied to the free surface
after every time step. A stencil size of r = 3 is used, giving second-order accuracy, with 70 points per
wavelength in the horizontal direction and 30 points in the vertical direction. Cosine stretching in the
vertical direction ensures sufficient resolution near the free surface, in accordance with Bingham and
Zhang (2007).

Body-free-surface intersection

In this work, waves are generated by a paddle wavemaker. As the paddle moves freely through the
computational grid, the exact position of the intersection between the body and free surface must be
estimated at each time step in order to satisfy the no-flux condition through the body surface. The
interior free surface is then artificially constructed by extrapolating the free surface into the body,
and C?-continuity is ensured by solving a 7th-order polynomial where 7, 7, and 7,, are specified
at the body-free-surface intersection. To improve the robustness of this process, we implement a
semi-Lagrangian particle that tracks the body-free-surface intersection at all times. There are two
conditions required for such a particle: it must remain on the body surface at all times; and it must
remain on the free surface at all times. In order to satisfy the first condition, the velocity of the
particle, V p, is required to be tangential to the body surface at all times. The second condition may
then be satisfied by choosing the magnitude of the velocity as described in Liu et al. (2001), namely

(Vop —U) -nps
€r-NFs

Vp =

-+ U, (7)

where U is the velocity of the body at the intersection point P, e; is the unit tangential vector on the
body surface at P, and npg is the unit normal vector to the free surface at P. For a moving body such
as a wedge or paddle in forced motion, the body velocity and unit tangential vector are known at all
times. The unit normal vector to the free surface may be calculated based on the current position of
the intersection point and the free surface. The gradient of the velocity potential at the intersection
point may be approximated by applying a Weighted Least Squares stencil of derivative operators to
the surrounding fluid points. Defining the velocity of the body-free-surface intersection point by Eq.
(7) allows the position of the point to be time-stepped by

v, (5
which can easily be included as an additional ODE in the current explicit four-stage Runge-Kutta
procedure. The potential associated with the intersection point may then be updated by a modified
dynamic free surface boundary condition; namely

9 1
% = =91 = 5Vop-Vép +Vp-Vop. )

Implementing a semi-Lagrangian point in this way allows for improved construction of the artificial
interior free surface and, when mesh points exit the body, their new velocity potential and free surface
elevation values may be calculated more accurately based on ¢p and np respectively.

Test cases

To test this extension we consider a wave-generation problem, where a moving body in the form of a
paddle wavemaker is translated in forced motion. Both theory and experimental data describing this
problem up to second order were presented in Schéffer (1996), which is the basis of our comparisons.
The tested waves are collected in Table 1. All cases were run at a water depth of h = 0.7 m. In each
case the second-order motion of the wavemaker is given by

A2

X(t) = R{—iX et — ifg‘”“ei(w"w’”)t}. (10)



T[s) Hm] kh[] H/L

1.2 0.15 2.03  0.0691
1.5  0.1556 1.41  0.0497
2.0 0.12 0.95 0.0261

Table 1: Regular waves tested.
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Figure 1: Harmonic analysis of waves generated by second-order theory. Different colours represent
the number of points per wavelength in the horizontal.

Here X, is the complex first-order wave amplitude found by A = ¢y X,, where

a=g (e -0). i

and ¢y is the Biésel transfer function of Biésel (1951). The coefficient .Z T is the superharmonic transfer
function given in Schéffer (1996). For regular waves, w, = wy,. The wavemaker motion is ramped
up from zero over three wave periods in each simulation. The test section extends 10 m from the
paddle mean position, and a sponge layer measuring 5 wavelengths absorbs the propagating waves.
Once the initial ramped wave has propagated through the test section, the free surface elevation is
recorded for 4 wave periods. A harmonic analysis is then carried out on the recorded time series, where
third harmonics are also taken into account. Figure 1 shows the convergence of second-order wave
generation for two cases. Included are data from Schéffer (1996): black squares denote experimental
second-order wave generation; white squares denote first-order wave generation. The simulations were
carried out at second-order accuracy (r = 3) and have convergence rates of 1.86, 1.78, and 2.5 in the
first harmonic, for periods T'=1.2s, T = 1.5 s, and T = 2 s, respectively. Errors are measured with
respect to the expected theoretical primary wave amplitude. Finally, Figure 2 shows the difference
between first and second order wavemaker theory for a waves with periods T'=2 s and T = 2 s.

Conclusion

A semi-Lagrangian point tracking the body-free-surface intersection has been successfully implemented
in a fully nonlinear potential flow solver. Simulations of wave generation by a paddle wavemaker show
satisfactory agreement with theoretical and experimental work by Schéffer (1996), using both first-
and second-order wavemaker theory. Ultimately, the aim of this work is to extend the existing second-
order theory to account for higher harmonics, and to develop a method of optimizing wavemaker
signals to generate stable, bound waves with an arbitrary number of harmonics. In addition to this,
ongoing work is aimed at extending the solver to a high-order accurate scheme.
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Figure 2: Comparison of first and second-order wave generation.
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