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Ocean wave forecast and hindcast are very important in several fields linked to the exploitation of
the coastlines. They are important for the construction and management of o↵shore structures and
harbors and for naval operations. For example, in the case of harsh see conditions, it is important to
understand the interaction of the waves and currents with the local bathymetry to guide the docking
operations of vessels. Moreover, nowadays, to maximize the energy extraction of recent wave energy
converters (WEC), the settings of the Power Take O↵ and the activation of the survival modes rely
on the correct evaluation of the most energetic sites and on accurate and reliable wave forecasts.

While numerical ocean modeling forecast have been available for many years [4], it is only recently
that the numerical models have been specialized for the forecast in more confined areas and the relia-
bility of the models is still low compared to the required standard to maximize the energy extraction
times for WECs.

Here, we use a non-hydrostatic model [2] that is e�ciently able to follow the non-linear wave
propagation while retaining the dispersion, shoaling, refraction, and di↵raction features from deep to
shallow water conditions. It overcomes some limitations of the commercial software like MIKE 3 [3];
in fact, the domain can assume whatever shape, with stretching in each of the coordinate direction to
accommodate the local bathymetry and there is no limit in the direction of the inflow conditions.

It will be compared to a full 3D Navier-Stokes simulation for the interaction of a solitary wave with
a submerged barrier in a narrow channel. A sketch of the problem is described in figure 1. A solitary
wave enters a narrow channel with width W = 16m, depth d = 1m and length L = 24m. A submerged
obstacle is at the center of the channel. It is characterized by a rounded truncated pyramidal shape
with lower base 10.64m x 6.55m and an upper base 6.94m x 0.9m, the height of the obstacle is 0.8m.

Figure 1: Sketch of the analyzed problem; the grey surfaces represent solid walls, the blue shade
represents the free surface, the green region is the inlet area.
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Description of the depth semi averaged model (DSAM) The Depth semi averaged model is
well documented in [1], here, only the main features of the models are detailed for a case without wave
breaking or friction along solid walls. Mass and momentum conservation of the flow are written as

dt +rQ = 0 (1)

Mt +r · F = (gd+ pb)rh (2)

where d is the vertical distance between the free surface ⌘ and the local bathymetry (�h); Q is the
mass flux vector; U is the depth-averaged velocity in the horizontal plane; M is the generalized mass
flux and it is obtained as M = Q+

R ⌘
�hr�dz, with � the semi-averaged vertical velocity component

written as � =
R ⌘
�hwdz, w is the vertical component of the velocity, pb = r ·

R ⌘
�hwudz is the dynamic

pressure component at the seabed and u is horizontal velocity field. The flux term F takes into
account the other dispersive contributions and the classic shallow-water terms,
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where ⌦ is the dyadic product and �u represents the deviation of u with respect to the depth-averaged
field U, �u = �r�+ 1/d
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�hr�dz. The non-linear dispersive term is
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The integrated continuity equation
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gives the closer for �. Equations 1 and 2 are discretized using a fourth-order finite-volume discretiza-
tion based on an HLL-MUSCL-Hancock scheme and a fourth-order Adams-Bashforth-Moulton predic-
tor/corrector algorithm for the time integration, while equation 5 is approximated with a second-order
finite-di↵erence discretization.

Navier Stokes solver OpenFOAM is used for the Navier Stokes simulations of the problem in
figure 1. A second order finite volume discretization is used in space and a second order implicit time
marching scheme is used for the time evolution. The Volume of Fluid method is used to track the
position of the free surface. Because using analytical conditions on the inlet boundary would cause
oscillation downstream of the wave, a piston wave maker is used to initiate the wave.

Validation of the DSAM versus OpenFOAM A solitary wave with amplitude a = 0.2m is used
to validate the DSAM code. Here we underline that the spatial discretization of the DSAM is much
coarser with the respect to the one used in the NS simulation; in x and y it is three time coarser and in
the vertical direction z it is six times coarser above the obstacle. Practically, �xDSAM = �yDSAM =
0.2m, �yDSAM = 0.05m are the dimension of the uniform Cartesian mesh that has been used in the
DSAM simulations. In the NS simulation, the mesh is initially uniform in x and y but it stretches in
the x direction to follow the motion of the wavemaker, later. In the vertical direction, the NS mesh is
stretched around the undisturbed free surface.

Figure 2 shows the evolution of the wave as it overcomes the submerged obstacle. In each panel
the position of the obstacle is plotted using the white solid lines and the upper part of the figure refers
to the DSAM solution, the bottom part to the full 3D NS solution. Even though the generated waves
have small di↵erences (fig.2.a), the two solvers show a very similar behavior of the wave. There is
a steeping of the wave as it approaches the obstacle (fig.2.b); while rising on the obstacle, the wave
front curves, with a slower central part (fig.2.c and 2.d); some part of the wave is reflected back by
the obstacle (light blue part in fig.2.e). While approaching the front edge of the obstacle, the wave
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Figure 2: Evolution of the wave height for a solitary wave over a submerged obstacle. Time increases
from one panel to the other with a �t = 0.4s.

front steepens further (fig.2.f) and interacts with the front corner of the obstacle generating a sort of
dent in the downstream side of the wave (fig.2.g). While flowing away from the obstacle, the wave
front speeds up and forms a spilling breaker in the 3D NS solution (fig.2.h and fig.2.i).

Given the di↵erence in the mesh resolution (200 thousand points in the DSAM versus 7 million
points in the NS), the agreement in wave elevation is very good.

The largest errors are related to the dents that form on the free surface in correspondence with
the upper edges of the barrier. Figure 3.a shows the 3D view of the wave height at the same time of
figure 2.e. The dent in the front part of the wave is more emphasized by the DSAM, while the dent
in the back is more evident in the 3D NS solution.

We have found that this error could be related to the di↵used boundary method that is used to
solve the Poisson equation 5; i.e. the distances from the free surface and from the body are used to
smooth the Dirichlet condition on the free surface and the Neumann condition on the solid boundaries.

For the same time instant of figure 3.a, the Poisson equation has been solved using both the
di↵used boundary method and a new ”cut cell” method to prescribe the boundary conditions in their
exact position. The resulting vertical velocity on the z = 0 plane are plotted in fig.3.b and fig3.c
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Figure 3: a) 3D view of the wave height of fig.2.e; b) comparison between the vertical velocity contours
calculated using DSAM with di↵used boundary (top) and using OpenFOAM (bottom); c) compari-
son between the vertical velocity calculated using DSAM with a ”cut cell” method (top) and using
OpenFOAM (bottom).

and compared with the velocity at the same height in the 3D NS solution. The di↵used boundary
method generates a more intense negative vertical velocity in correspondence with the front edge of
the obstacle and a velocity less intense on the back side; while the ”cut cell” method results resembles
more closely those obtained with OpenFOAM.

These comparisons are promising. So the ”cut cell” method will be used for the whole time
simulation and the results will be presented at workshop to show that even such small discrepancies
can disappear without any need to increase the mesh resolution and consequently the computational
time.
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