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1 Introduction

We consider two-dimensional surface gravity waves in irrotational motion propagating at the sur-
face of perfect incompressible fluid. The free surface at y = η(x, t) and the bottom at y = −d(x, t)
are both impermeable, with x the horizontal variable, y the vertical upper one and t the time.
Assuming long waves in shallow water (i.e., ∂x and ∂t are “small” operators) without restriction
on their amplitudes (i.e., fully nonlinear), Serre [1] derived a set of approximate equations for
constant depth. In presence of a varying bottom, these equations can be written [2]

ht + [h ū ]x = 0, (1.1)

ūt + ū ūx + g ηx = 1

2
(γ̃ + γ̆) dx − 1

3
h−1

[

h2 γ̃ + 1

2
h2 γ̆

]

x
, (1.2)

where h = η + d is the total water depth, ū is the depth-averaged horizontal velocity, g > 0 is the
acceleration due to gravity, γ̆ and γ̃ being the vertical accelerations at, respectively, the bottom
and the free surface, i.e.,

γ̆ = −dtt − 2 ū dxt − ū2 dxx − ( ūt + ū ūx ) dx, (1.3)

γ̃ = γ̆ + h
{

ū 2

x − ūxt − ū ūxx

}

. (1.4)

The equation (1.1) for the mass conservation is exact, while the momentum equation (1.2) is
an approximation: its left-hand side involves first-order terms and its right-hand side involves
third-order terms. This approximation yields a fully nonlinear but only weakly dispersive model
of water waves. It is thus desirable to improve the model for a better description of dispersive
effects without increasing the mathematical complexity of the model, that is without introducing
higher-order derivatives because they are computationally very demanding.

In order to improve the dispersive properties of shallow water models — i.e., to extend their
validity to deeper water — some asymptotically consistent modifications of the momentum equa-
tions have been proposed. These modified equations involve free parameters that can be chosen
to tune the (weakly dispersive) linear dispersion relation such that it better matches the (fully
dispersive) exact relation (see, e.g., [3, 4, 5]). For the Serre equations, such modified equations
can be obtained replacing the momentum equation (1.2) by [6, 7]

(

1− αd2 ∂ 2

x

)

( ūt + ū ūx + g ηx ) = 1

2
(γ̃ + γ̆) dx − 1

3
h−1

[

h2 γ̃ + 1

2
h2 γ̆

]

x
, (1.5)

where α is a free parameter at our disposal. One can easily check that equation (1.5) is asymp-
totically consistent with (1.2). The parameter α is generally chosen considering a travelling wave
of permanent form in constant depth. In such a case, the linear dispersion relation (relating the
angular frequency ω and the wavenumber k) of the Serre equations is a (2, 2)-Padé approximation
(in the wavenumber) of the exact relation, while when α 6= 0 one gets a (4, 2)-Padé approximation

ω2

g/d
=

(kd)2 + α (kd)4

1 + (1
3
+ α) (kd)2

. (1.6)
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For all α, the linear dispersion relation matches the exact one ω2 = gk tanh(kd) at least up to
the fourth-order in its Maclaurin expansion in terms of the wavenumber, but for α = 1/15 the
matching is up to the sixth-order. Thus, α = 1/15 is the best choice to improve the dispersive
properties (according to the criterion considered here).

However, this improvement occurs only for horizontal bottoms. Indeed, in presence of a bottom
slope (dx 6= 0), the dispersive properties of the modified equations are of fourth-order only for all α.
This means that the modification (1.5) cannot improve the model in presence of a varying seabed,
as one can check (see below). In practice the dispersive properties are nevertheless somewhat
improved for very mild slopes (|dx| ≪ 1), but it is of practical interest to remove this restriction.

In this work, we propose another modification of the Serre momentum equation such that the
dispersive effect are improved for finite constant slopes. To this aim, we first reduce, in section 2,
the exact (i.e., fully dispersive) linear equations to a single pseudo–differential equation for the free
surface only. In section 3, we consistently modify the Serre equations with an unknown operator
that is determined by identification with the shallow water approximation of the exact linear
equation. These modified Serre equations for varying depth should thus provide an improvement
at least for mild-curvature of the seabed (i.e., when the gradient of the bottom slope is small).

2 Linear waves on sloping beach

The (fully dispersive) linearised Euler equations for an irrotational motion are

φxx + φyy = 0 for − d 6 y 6 0, (2.1)

φy + dt + dx φx = 0 at y = −d, (2.2)

φt + g η = 0 at y = 0, (2.3)

φy − ηt = 0 at y = 0, (2.4)

where φ is a velocity potential. Here, we consider constant slopes, i.e., d(x, t) = d0 + sx where

d0 > 0 is the depth at x = 0 and s
def

= tan(θ0) is the constant slope of the seabed (θ0 > 0 the
seabed angle of inclination). Using the conformal mapping z = x+ iy 7→ Z = X + iY where

Z
def

=
d0
θ0

log

(

z

d0
+

1

s

)

, (2.5)

the wedge domain {sx > −d0;−d0 − sx 6 y 6 0} is mapped onto the strip −d0 6 Y 6 0 with
x = −d0/s 7→ X = −∞ and x = +∞ 7→ X = +∞. In the mapped variables, after elimination of
η(x, t) = −g−1φt(x, 0, t), the equations (2.1)–(2.4) become

ΦXX + ΦY Y = 0 for − d0 6 Y 6 0, (2.6)

ΦY = 0 at Y = −d0, (2.7)

ΦY + g−1 θ0 exp(θ0X/d0)Φtt = 0 at Y = 0, (2.8)

where Φ(X,Y, t)
def

= φ(x(X,Y ), y(X,Y ), t).

The general solution of the Laplace equation (2.6) satisfying the lower boundary condition
(2.7) is [8]

Φ(X,Y, t) = 1

2
Φ̆(Z + id0, t) + 1

2
Φ̆(Z∗ − id0, t) = cos((Y + d0) ∂X) Φ̆(X, t), (2.9)

where Φ̆(X, t)
def

= Φ(X,−d0, t) is the velocity potential at the bottom. Substituting (2.9) into the
upper boundary condition (2.8), one gets the complexe difference-differential equation

Φ̆X(X+id0, t)− Φ̆X(X− id0, t) +
θ0
ig

exp

(

θ0X

d0

)

[

Φ̆tt(X + id0, t) + Φ̆tt(X − id0, t)
]

= 0. (2.10)



The 35th Int. Workshop on Water Waves and Floating Bodies, Seoul, Korea, Apr. 26–29, 2020.

Exploiting the relation Φ̆(X ± id0, t) = exp(±i d0 ∂X) Φ̆(X, t) (Taylor expansion around d0 = 0)

and using the velocity potential at the free surface Φ̃(X, t)
def

= Φ(X, 0, t) = cos(d0∂X) Φ̆(X, t), this
difference-differential equation can be rewritten as the real pseudo-differential equation

tan(d0 ∂X) Φ̃X(X, t) − g−1 θ0 exp(θ0 X/d0) Φ̃tt(X, t) = 0. (2.11)

Note that A(X, t)
def

= η(x(X, 0), t) = −g−1Φ̃t(X, t) also satisfies the equation (2.11).
Returning to the physical variable x(X, 0) = d0 exp(θ0X/d0) − d0/s, since d = d0 + sx and

s = tan(θ0) = dx, the relation (2.11) is rewritten in terms of the original variables
{

∂2

∂t2
− g

∂

∂x
tan

(

arctan(dx)

dx
d

∂

∂x

)}

η(x, t) = 0. (2.12)

It should be emphasised that the equation (2.12) is exact for (fully dispersive) linear waves provided
that dxx = dt = 0, i.e., for flat static bottoms, in particular for a constant depth. For more general
seabeds, (2.12) provides a reasonable approximation if the bottom varies very slowly in time and
if its curvature is small, such assumptions being made to derive shallow water approximations.

The relation (2.12) suggests to introduce an “apparent” (or “effective”) water depth D as

D
def

= d−1

x arctan(dx) d 6 d. (2.13)

This shows that a bottom slope creates a slowdown of the wave compared to a flat bottom of
the same depth, an effect conjectured by Dutykh and Clamond [9] from a non-dispersive shallow
water model. In shallow water ∂x is “small” and, since dxx = 0, the operator tan(D∂x) can be
expanded up to the fifth-order as

tan(D∂x)
def

= D∂x + 1

3
D∂x D∂x D∂x + 2

15
D∂x D∂xD∂x D∂x D∂x + · · ·

≈ d ∂x + 1

3
∂x d

3 ∂ 2

x + 2

15
d5 ∂ 5

x + 4

3
dx d

4 ∂ 4

x + 3 d 2

x d3 ∂ 3

x + d 3

x d2 ∂ 2

x . (2.14)

This expansion should be compared with the approximate Serre-like equations in order to derive
suitable improvements. We note in passing that some approximate and empirical relations used in
engineering for water waves propagating over mild slopes could be somewhat improved replacing
d by D, thus turning mild-slope approximations into mild-curvature approximations .

It should be noted that the equation (2.12) can be solved analytically for standing waves over
constant slope [10], but this analytic solution is hardly tractable. Moreover, in order to improve
shallow water approximations, special solutions are not needed. Indeed, it is sufficient, simpler
and more general to compare the equations via their shallow water expansions, i.e., expansions
such as (2.14) obtained assuming that ∂x and ∂t are “small” operators.

3 Modified Serre’s equations

In order to address the drawback of (1.5), a better modification is sought replacing −αd2 ∂ 2
x

by another second-order differential operator D to be defined such that the linearised equations
match the (fully dispersive) exact ones for constant slopes up to the highest possible order in the
shallowness expansion. Of course, this alternative modification of the momentum equation is also
asymptotically consistent with the original equation, as one can easily check.

We thus consider infinitesimal waves with a fluid motion close to rest — i.e., η and ū are small
— with d = d(x) and dxx = 0. The linearised modified Serre-like equations are then

ηt + [ d ū ]x = 0, (3.1)

(1 + D) ( ūt + g ηx ) − 1

3
d2 ūxxt − dx d ūxt = 0, (3.2)

and eliminating ū between these two relations, one gets after some algebra
{

g−1 ∂ 2

t − ∂x d
[

1 − 1

3
[ 1 + D ]

−1
d−1 ∂x d

3 ∂x

]

−1

∂x

}

η = 0. (3.3)
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The sixth-order shallow water expansion (i.e., assuming that ∂x is “small”) of this linear equation
{

g−1∂ 2

t − ∂xd∂x − 1

3
∂ 2

x d
3∂ 2

x + 1

3
∂xdDd−1∂xd

3∂ 2

x − 1

9
∂ 2

x d
3∂xd

−1∂xd
3∂ 2

x

}

η ≈ 0, (3.4)

is to be compared with the exact (i.e., fully dispersive) linear relations (2.12)–(2.14) for constant
slopes. Thus, the expansion (3.4) matches the exact one up to the sixth-order only if

D = 1

5
d 2

x − 1

15
d−1 ∂x d

3 ∂x. (3.5)

The classical improvement is recovered on constant depth, as it should be. This choice is an
improvement for constant slopes but, in practice, it should also improve the model when the
bottom curvature is small (i.e., if |ddxx| ≪ 1) and, at least, when the bottom varies very slowly
in time.

4 Discussion

Considering fully-dispersive linear waves on constant slopes, we propose a modification of the Serre
equations such that their dispersive properties are improved. Here, we focus on Serre’s equations
but similar modifications hold for any variant of shallow water (Boussinesq-like) approximations.

A priori, this improvement is not limited to mild slopes, as some previous works, but to mild
curvatures of the seabed. The effectiveness of this approach will be investigated via numerical
simulations. More specifically, we will focus on the shoaling over quite steep beaches where the
present modified Serre equations should provide improvements. These numerical simulations, yet
to be done, will be presented at the conference.

Further theoretical investigations can be performed. For instance, one can look for: (i) disper-
sion improvements for arbitrary (i.e., not only constant) slopes; (ii) a three-dimensional extension
(i.e., two horizontal spacial dimensions); (iii) a variational derivation of the modified equations.
These possible extensions will be discussed at the conference.
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[7] P. A. Madsen and H. A. Schäffer. Higher-order Boussinesq-type equations for surface gravity
waves: derivation and analysis. Phil. Trans. R. Soc. A, 356(1749):3123–3184, 1998.

[8] D. Clamond. Steady finite-amplitude waves on a horizontal seabed of arbitrary depth. J.

Fluid Mech., 398:45–60, 1999.

[9] D. Dutykh and D. Clamond. Shallow water equations for large bathymetry variations. J.

Phys. A: Math. Theor., 44:332001, 2011.

[10] M. Roseau. Short waves parallel to the shore over a sloping beach. Comm. Pure Appl. Math,
11(4):433–493, 1958.


