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Introduction

The present study aims to couple a nonlinear viscous flow model based on the Spectral Wave Explicit Navier-Stokes
Equation (SWENSE) method and a linear potential flow model which is based on Poincaré’s velocity representation.
A circular cylindrical matching surface is introduced for the potential flow model to update the far-field domain
with efficiency and stability. A relaxation scheme, which blends the solution of viscous flow with a target solution,
is used to update the far-field boundary conditions of viscous flow solver.

Assumptions and coupling strategy

Figure 1: Coupling strategy

The hypothesis that the total solution (functional quantities) can
be decomposed into the incident and complementary parts is
adopted. The nonlinear incident solution is already known from
potential flow theory in a whole fluid domain. The computational
domain of potential and viscous flow models are divided for com-
plementary flow. A viscous flow model based on the SWENSE
method is used to compute the complementary flow near to the
body [2]. A linear potential flow model based on Poincaré’s veloc-
ity representation is adopted to compute the complementary flow
in the far-field.
Figure 1 illustrates the coupling strategy. Fluid velocity and wave
elevations are coupled on the matching surface for potential flow
and in the relaxation zone for viscous flow. The matching surface is
located inside the computational domain of the viscous flow model.
The complementary fluid velocity and wave elevation, obtained
from the viscous flow model on the matching surface, are used as
boundary conditions for the potential flow model. The rotational
velocity components are assumed to be zero from the matching
surface to infinity. By using the linear potential flow model, the complementary fluid velocity and wave elevation
are reconstructed in the far-field. In the relaxation zone, being located in the region of far-field, reconstructed
complementary flow velocity and wave elevation from the linear potential flow model are imposed as boundary
conditions for viscous flow.

Potential and viscous flow models

Linear potential flow model based on Poincaré’s velocity representation

The Poincaré’s velocity representation is an alternative expression of Boundary Integral Equation (BIE) for the
fluid velocity at the field point. This representation was introduced by [7] for steady and time-harmonic problems
with the existence of free surface. Recently, [1] extended the representation for an unsteady problem without
forward speed. The final fluid velocity representation at any field point is expressed explicitly with fluid velocity
on the matching surface and wave elevation along its waterline. A vertical circular cylindrical matching surface is
introduced to remedy a singular behavior, which was reported in [1]. The Green’s function and complementary
parts are expanded with the Fourier and Fourier-Laguerre series, as similar to [5]. After manipulation, the final
velocity representation at any field point is given explicitly as:uxCuyC
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where uC is the fluid velocity at the field point x = (r, θ, z). The superscripts x,y,z denote directional components,
respectively. Upn(r) is the Fourier-Laguerre coefficient. Lp(−sz) = e

s
2 zLm(−sz) is Laguerre function with Laguerre

polynomials Lm(−sz). s is an approximation parameter. URpn,UR∗pn ,UHpn and UFpn are contributions of source, image
source, harmonic term and free surface, respectively. For example, x-directional components are given as:
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where Cnmn, Wmn and En are Fourier-Laguerre and Fourier coefficients defined on the matching surface and its
waterline as:[
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where unC , wC and ΞC are normal and tangential fluid velocity on the matching surface and complementary wave
elevation along the waterline which are obtained from the viscous flow solver, respectively. Sn,mp and FFn,p are

elementary functions, superscripts R,R∗,H,F denote components of Green’s function and subscripts a,θ′,ζ correspond
to the directional derivatives, respectively. General forms of elementary function are defined as:

Sn,mp(r, a, t− τ) = 2πas

ˆ 0

−∞

ˆ 0

−∞
Lm(−sζ)Lp(−sz)Gn(r, z, a, ζ, t− τ)dζdz (6)

Fn,p(r, a, t− τ) = 2πas

ˆ 0

−∞
Lp(−sz)Gn(r, z, a, ζ = 0, t− τ)dz (7)

where Gn(r, z, a, ζ, t − τ) is the n-th Fourier mode of Green’s function. The complementary wave elevation in the
far-field is updated by using the linear kinematic free surface boundary condition.
The benchmark test is conducted for a linear diffraction problem of a vertical circular cylinder in regular waves.
Complementary fluid velocity and wave elevation on the matching surface from analytic solutions are used to
reconstruct the fluid velocity and wave elevation at the field point by using the Poincaré’s velocity representation.
Reconstructed wave field and fluid velocity for the diffraction of a vertical circular cylinder are shown in Figure 2.

(a) Wave elevation field (b) Fluid velocity on the mean free surface

Figure 2: Reconstructed wave elevation and fluid velocity by using the Poincaré’s velocity representation.
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Multiphase SWENSE with Level-set function

The SWENSE method was introduced for a single-phase flow by [2] and for a multiphase flow by [4, 9]. In multiphase
flow, functional quantities such as velocity, pressure and Level-set (LS) function can be decomposed into the incident
and complementary parts by combining ideas of [4, 9] as follows:

u =uI + uC , p =pI + pC , ψ =ψI + ψC (8)

where u, p and ψ are fluid velocity, pressure and LS function, respectively. The subscripts I and C represent incident
and complementary parts, respectively. Substituting above relation into the Navier-Stokes (NS) equations and LS
transport equation gives governing equations for complementary parts as:

∇ · uC = 0 (9)

∂uC
∂t

+∇ · (uuC) + uC · ∇uI = −1

ρ
∇pC −

pI
ρw

∇ρ
ρ

+∇ ·
(
ν
(
∇uC +∇uTC

))
(10)

∂ψC
∂t

+∇ · (uψC) = −∂ψI
∂t
−∇ · (uψI) (11)

where ρ and ρw are mixture and water density, respectively [4]. In the framework of OpenFOAM, governing
equations are discretized on a collocated Finite Volume (FV) with second-order accuracy.
The far-field boundary conditions for the viscous flow model are imposed by using a relaxation scheme to gener-
ate/absorb complementary waves as:

ψC = (1− w)ψC + wψPoincaré
C and uC = (1− w)uC + wuPoincaré

C (12)

where w = [0, 1] is a weight function varying from 0 to 1 in the relaxation zone. The superscript Poincaré denotes
the functional quantity obtained from the linear potential flow model based on Poincaré’s velocity representation.

Benchmark test on the coupling

Figure 3: Computational domain of viscous and potential flow
models for benchmark test case on a vertical circular cylinder in
regular waves.

A benchmark test on the coupling is conducted
for the diffraction problem by a vertical circular
cylinder in regular waves. The computation con-
figuration is shown in Figure 3. The grey colored
zone denotes the computational domain of vis-
cous flow solver and the relaxation zone is defined
from a red dashed circle to the end of the grey
zone. The vertical circular cylindrical matching
surface is defined with red-colored dots. Red-
colored dots represent Gauss points where com-
plementary fluid velocity and wave elevation are
obtained from the viscous flow solver. The far-
field solution, reconstructed from the Poincaré’s
velocity representation, is used as a target solu-
tion to update far-field boundary conditions of
the viscous flow solver.
Computed complementary wave elevation fields
are compared in Figure 4 with respect to the ap-
plication of coupling, where k0 is the wavenumber
and acylinder is a radius of the cylinder. When
the coupling is considered, the matching surface
is located at 2acylinder. In Figure 4, complemen-
tary waves are propagating up to the far-field and
smooth transition across the relaxation zone are
observed when the coupling is applied.
The harmonic and mean components of horizontal force acting on the cylinder are compared in Figure 5 with the
analytical solution of potential theory [6], results of Higher-Order Boundary Element Method (HOBEM) [3] and
results by a viscous flow solver solving the NS equations in a large computational domain [8].
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(a) without coupling, t = 12T

(b) with coupling, t = 12T

Figure 4: Complementary wave ele-
vation fields with respect to appli-
cation of coupling for the case of
k0acylinder = 1.0.

(a) First harmonic, F (1) (b) Mean drift force, F̄ (2)

(c) Second harmonic, F (2) (d) Third harmonic, F (3)

Figure 5: Horizontal force harmonics and mean drift forces with respect to
the two-way coupling for different viscous flow models.

When the coupling is applied, the first and second harmonics are slightly improved compared to results without
considering coupling. The mean drift forces have enhanced results when the coupling is adopted. However, no
improvements are observed for the third harmonics because poor results are obtained on the magnitude of forces
for all simulations. The extra computational time for coupling is measured less than a couple of seconds (in the
present study: ≤ 2s) for each time step which is relatively smaller than the computational time needed for viscous
flow solver (usually in the range of O(10s) per time step).
To conclude, the computational domain can be reduced when the coupling between potential and viscous flow is
adopted. Especially, the horizontal mean drift forces acting on the structure are enhanced. The computation cost
slightly increases, but it is negligible compared to the computational cost needed to solve the viscous flow model.
However, the algorithm complexity is increased and it is still to be understood how efficient for practical cases.
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