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The fundamental solution (Green function) of free-surface flows associated with fluid viscosity is studied
by examining the complex dispersion relation and evaluating time-harmonic ship waves generated by a
pulsating and translating source at the free surface. Being critically important, the viscous effect indeed
removes the peculiar singularity and fast oscillations in the Green function when the field point approaches
to the track of the source located close to or at the free surface.

1 Introduction

The Green function associated with a pulsating and translating source represents the fundamental solution
to ship-motion problems with forward speed. Many studies have been carried out to analyse its behaviours
and to develop numerical schemes for its computations. The most striking property is the peculiar sin-
gularity and fast oscillations for field points approaching to the track of source point at or close to the
free surface, as revealed in Chen & Wu (2001). This behaviour makes the waterline integral included in
classical boundary integral equations nightmarish. Manifestly non-physical, it becomes the stumbling block
to prevent from developing a reliable tool to evaluate wave loads and induced ship motions.

Not satisfied with using practical treatments by lowering the waterline or by parametrising numerical
filters to mask the difficulty, we have examined the origin of besetting by re-introducing the neglected phys-
ical parameters like surface tension, fluid viscosity or combination of both. The present paper concerns
the introduction of viscosity. Unlike the classical way introducing ”fictitious” viscosity (Rayleigh viscosity
or Lighthill’s argument) which was just a mathematical device to make waves propagating radially out-
wards, the analysis based on linearised Navier-Stokes equation and Helmholtz decomposition in Chen &
Dias (2010) leads to the consistent kinematic and dynamic boundary conditions on the free surface with
viscosity. The particular case of oscillating Stokelet (equivalent to pulsating singularity) is considered in
Lu (2019) and that of translating source in Liang & Chen (2019).

The dispersion relation associated with the boundary condition on the free surface with viscosity is
complex with an imaginary part proportional to the viscosity and a three-fold derivative (once with respect
to the time and twice to the vertical coordinate) of velocity potential. The analysis of the complex
dispersion equation gives complex wavenumbers with increasing imaginary part and shows that waves
of small wavelength are heavily damped and the peculiar singularity disappears. Time-harmonic waves
generated by a translating and pulsating source at the free surface are illustrated in the paper.

2 Complex dispersion relation with viscosity

We use the reference system moving with the ship of length L whose ox-axis points to the direction of ship
speed U , xoy-plane on the mean free surface and oz-axis positive upwards, and define following parameters

F = U/
√
gL , f = ω

√
L/g , τ = Ff = Uω/g (1)

where g is the acceleration due to gravity and ω the encounter frequency.

The fundamental solution to the time-harmonic ship-motion problem is classically defined as the real
part <e{G(x, ξ)e−ift} in which the spatial Green function G(x, ξ) is decomposed into :

4πG(x, ξ) = −1/r + 1/r′ +GF (x, ξ) (2)



in which r is the distance between the source point ξ(ξ, η, ζ) and the field point x(x, y, z) and r′ is that
between the mirror source ξ′(ξ, η,−ζ) and x(x, y, z). The free-surface term GF (x, ξ) is given by the Fourier
representation

F 2GF (x, ξ) =
1

π

∫ π

−π
dθ

∫ ∞
0
dk

k

D(k, θ)
ek(v−iw) (3)

with the speed-scaled Fourier variable k and

v = (z + ζ)/F 2 ≤ 0 and w = cos θ(x− ξ)/F 2 + sin θ(y − η)/F 2 (4)

The denominator of the integrand function in (3) is the dispersion function associated the boundary
condition (eq.16) in Chen & Dias (2010) :

D(k, θ) = D(k, θ)− i4ε(k cos θ − τ)k2 with D(k, θ) = (k cos θ − τ)2 − k (5)

The coefficient ε in (5) is defined by

ε = ν/(F 3
√
gL3) = νg/U3 (6)

where ν denotes the fluid kinematic viscosity.

The real part of D(k, θ) given in (5) is exactly the same as the classical dispersion function D(k, θ).
Both the complex dispersion function D(k, θ) and its real pair D(k, θ) are independent of the sign of θ so
that we consider only the case θ ∈ (0, π). The quadratic equation D(k, θ) = 0 has two roots, namely,

k− = τ2/(1/2 +
√

1/4 + τ cos θ)2 and k+ = (1/2 +
√

1/4 + τ cos θ)2/ cos2 θ (7)

Unlike the way to add an artificial and infinitesimal imaginary part (equivalent to ε → 0+) multiplying a
sign function sgn(Df ), the complex dispersion function (5) represents the exact viscous effect. The cubic
dispersion equation D(k, θ) = 0 gives three complex roots denoted by :

k1,2,3(θ) = κ1,2,3(θ) + im1,2,3(θ) (8)

The first wavenumber k1 is of finite value. Its real part κ1 is very close to k− and its imaginary part
m1 > 0. The second wavenumber k2 is very different in its imaginary part |m2| ∝ ε4|κ2|5/2 while κ2 can
be very large for θ ≈ π/2, otherwise κ2 is close to k+ for ε� 1. The third wavenumber k3 has a negative
real part κ3 < 0 and very large modulus of order O(1/ε). By assuming ε� 1, we have approximations of
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Figure 1: Complex dispersion curves k1,2(θ) at τ = 0.2: (left figure) real part κ1,2(θ) on the Fourier plane (α, β) =
κ(cos θ, sin θ) and (right figure) its imaginary part m2(θ) by the height above the (α, β) plane.

first two wavenumbers

κ1 ≈ k− m1 = ε4(k−)5/2/(2
√
k− cos θ + 1) for θ ∈ [0, π − θc] (9a)

κ2 ≈ k+ m2 = ε4(k+)5/2/(2
√
k+ cos θ − 1) for θ ∈ [0, π/2) (9b)

κ2 ≈ k+ m2 = ε4(k+)5/2/(2
√
k+ cos θ + 1) for θ ∈ (π/2, π − θc] (9c)



in which the particular value θc = 0 for τ ≤ 1/4 and θc = arctan(
√

16τ2 − 1) for τ > 1/4. For θ ∈ (π−θc, π],
we use the complex wavenumbers derived from D(k, θ) = 0, i.e.

κ1 = κ2 = (1/2 + τ cos θ)/ cos2 θ m1 = −m2 =
√
−1/4− τ cos θ/ cos2 θ (9d)

since the terms of order O(ε) can be neglected in this interval. Furthermore, we ignore the contribution of
large third wavenumber k3 = O(1/ε) which has a negative real part.

The complex wavenumbers k1,2(θ) = κ1,2(θ)+im1,2(θ) are illustrated by the curves in the Fourier plane
(α, β) = κ(cos θ, sin θ) on the left of Figure 1 for the real part κ1,2(θ) and by the height above the (α, β)
plane for the imaginary part m2(θ) on the right of Figure 1. The value of κ1(θ) is small and around the
origin, depicted by the zoomed box in the middle of left picture. Several values of ε = 10−2, 10−3, 10−4

and ε = 0+ (without viscosity) are used. The dispersion curve at ε = 10−4 is not distinguishable with
that without viscosity in real plane but the imaginary m2 is not negligible. Higher the value of ε is, more
rapidly the imaginary part increases.

3 Ship-motion Green function

The integrand function k/D(k, θ) in (3) is a meromorphic function and can be decomposed into the sum
of three fractions associated with the three roots. The inner k-integral of GF can then be integrated in a
closed form and (3) is re-written as :

F 2GF (x, ξ) =
1

π

∫ π−θc

−π+θc

κ2K2(θ)− κ1K1(θ)

2
√

1/4 + τ cos θ
dθ +

i

π

∫ π+θc

π−θc

k2K2(θ)− k1K1(θ)

2
√
−1/4− τ cos θ

dθ (10)

with an error of order O(ε), as the third term relative to k3 is neglected. The wavenumber-integral function
K(θ) involved in (10) is defined by

K(θ) =

∫ ∞
0

ek(v−iw)

k − (κ+ im)
dk = Cex(Z) + iπ [sgn(m) + sgn(mv − κw)]H(κ) exp(Z) (11)

with
Cex(Z) = eZE1(Z) , Z = (κ+ im)(v − iw) (12)

and (v, w) defined by (4) while (κ,m) representing (κ1,m1) or (κ2,m2). Furthermore, sgn(·) is the sign
function and H(·) the Heaviside function. Finally, E1(·) is the exponential-integral function defined by
(eq.5.1.1) in Abramowitz & Stegun (1967). The modified exponential-integral function Cex(·) is a non-
oscillatory function and its θ-integration yields then a non-oscillatory local component.

Since Z defined by (12) is complex, the function exp(Z) on the right hand side of (11) is oscillatory.
The θ-integration of exp(Z) gives the wave component if any and could contribute to the non-oscillatory
local component as well. In the analysis of Chen & Noblesse (1997), an original relationship between the
dispersion curves in real Fourier plan and the far-field wave patterns was established. According to this
analysis and the picture of dispersion curves on the left of Figure 1, the wave patterns are not affected
for small ε � 1 and could be largely modified for larger ε, i.e., for slow forward speed or in high viscous
fluid, according to the definition (6). What is important is, according to (9), that the value of imaginary
wavenumber |m2| ≈ ε4(k+)5/2 becomes very large for θ ≈ π/2. The second part of the wavenumber-integral
function (11) is derived such that the real part of Z is always negative <e{Z} = κv + mw < 0 when the
sign of m2 and that of imaginary part =m{Z} = mv − κw are the same. Even for v = 0, the magnitude
of | exp(Z)| = ekv+mw decays exponentially, and waves of large wavenumbers k+ are heavily damped or
disappear simply. The peculiar singularity and fast oscillations predicted in Chen & Wu (2001) are then
removed by introduction of fluid viscosity.

4 Discussion and conclusions

Although the appearance of sign and Heaviside functions in (11), the wavenumber-integral function K(θ)
is a smooth function of θ for v < 0 but has sharp variation at θ ≈ θ0 and θ = θ0 + π with θ0 defined by

θ0 = arctan[−(x− ξ)/(y − η)] (13)



At v = 0, the wavenumber-integral function K(θ) and its derivatives are singular at θ = θ0 and θ = θ0 + π
so that special algorithms are needed to extract the singular terms and to integrate them analytically.
Furthermore, the highly oscillatory variation of K(θ) for large θ (approaching to π/2 for small ε) should
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Figure 2: Time-harmonic G(x, ξ) at τ = 0.2 along a strait cut at (x − ξ)/F 2 = −10 and v = 0 = z + ζ without
viscosity (left top) and with viscosity (left bottom) and patterns (right) generated by a source at the free surface.

be integrated with cautions.

The free-surface term GF (x, ξ) defined by (10) is illustrated on Figure 2. Its real (R.P.) and imaginary
parts (I.P.) along a strait cut at (x − ξ)/F 2 = −10 on the free surface v = (z + ζ)/F 2 = 0 are depicted
by red and blue solid lines, respectively, on the left. The pulsating and translating source is located at the
origin for τ = 0.2. The top part represents the values without viscosity (ε = 0+) while the bottom part
depicts the values with viscosity (ε = 0.0001). The singular and fast oscillations in the vicinity of source
track (top) disappear with viscosity (bottom). On the right of Figure 2, the wave pattern is depicted with
the real part and imaginary part on the up half and lower half, respectively.

The viscous effect analysed through the complex dispersion relation is shown to be primordial for the
fundamental solution to be physically acceptable and numerically calculable. The new ship-motion Green
function with viscosity should be critically useful in the computation of integrals along the waterline or/and
on the free surface to solve the ship seakeeping problems with full satisfaction.
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