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The second-order wave theory offers a welcome improvement to linear wave loads. Due to the
quadratic frequency interactions, they are traditionally a magnitude more costly in terms of CPU
time. We here present a method for slender vertical circular cylinders that allows their computation
at an effort of O(N logN), similar to linear wave loads.

1 PROBLEM FORMULATION
We consider a vertical circular cylinder of diameter D at a depth h. A Cartesian coordinate system
is adopted with the vertical z-axis pointing upwards from the still water level at the cylinder center
and the x-axis pointing in the wave direction. The free surface elevation, η, is measured from the still
water level in positive z direction. Further, the horizontal and vertical fluid velocities are expressed
by a velocity potential such that (u,w)T = ∇φ.

Following standard Stokes wave theory analysis, the free surface conditions can be expressed by
quantities at z = 0 and be combined into

Φtt + gΦz = − (∇HΦ · ∇HΦ)t −
1

g2

(
Φ2
tt

)
t
− 1

g2
ΦttttΦt −∇2

HΦΦt. (1)

We apply the Rainey (1995) force model plus the standard viscous Morison force

F =

∫ η

−h
ρπR2 [(Cm + 1) u̇+ Cmwzu] dz +

∫ η

−h
ρRCDu|u|dz. (2)

This force model contains the contributions from convective accelerations and the axial divergence
force. The inertia loads are identical to the recent force model of Kristiansen & Faltinsen (2017) for
the wetted part of the cylinder. The two models further contain different point forces at z = 0. These,
however, are of third-order magnitude and are thus left out here. By a decomposition of the velocity
field into its first- and second-order components, we obtain expressions for the first- and second-order
force

F1 = ρπR2

∫ 0

−h
(Cm + 1)u1,t dz , F2D = ρR

∫ 0

−h
CDu1|u1| dz (3)

F2I = ρπR2

[∫ 0

−h
(Cm + 1) (u2,t + u1u1,x + w1u1,z) + Cmw1,zu1dz + (Cm + 1)η1u1,t|z=0

]
(4)

where F2I and F2D are the second-order inertia and drag loads, respectively.

2 THE LINEAR FORCE
We divide the velocity potential into its first- and second-order parts φ1,2 and express φ1 as a double
sided Fourier series

φ1 =
N∑

j=−N

B̂je
i(ωjt−kjx) cosh kj(z + h)

cosh kjh
. (5)



Here N is the number of positive frequencies, t is time and ωj = jω1 are the angular frequencies.
To make the Fourier series real, we further impose B̂−j = B̂∗

j and k−j = −kj . Here ∗ indicates
the complex conjugate and kj are the wave numbers, which satisfy the linear dispersion relation
ω2 − gk tanh kh = 0. It is now straight forward to obtain the linear force by insertion of (5) into (3)
and integration. We may express the result in non-dimensional form by introduction of

Ω = ω
√
h/g , κ = kh , φ̃ = φ h−3/2g−1/2 , ˆ̃B = B̂ h−3/2g−1/2. (6)

We hereby get the below well known result

F1

ρgπR2
=

N∑
j=−N

(Ca + 1)F1
ˆ̃Bje

i(ωjt−kjx) with F1 = Ω tanhκ, (7)

which can be obtained by FFT with an N logN effort by use of the linear transfer function F1.

3 THE SECOND-ORDER FORCE
We look first at the force from the second-order acceleration, the first term of F2I . We denote this term
F21. To this end, we derive the second-order potential by insertion of (5), into (4). The application
of complex, double sided Fourier sums simplifies the calculations considerably, since no distinction
between cosine and sinus functions and sub/super harmonics is needed. We thus get

φ̃2 = i
N∑

m=−N

N∑
n=−N

ˆ̃Bm
ˆ̃BnTΦei((ωm+ωn)t−(km+kn)x) cosh(km + kn)(z + h)

cosh(km + kn)h
(8)

with
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(Ωm + Ωn)2 − (κm + κn) tanh (κm + κn)
. (9)

This result is consistent with Sharma & Dean (1981). We next derive F21 by vertical integration of
u2,t = φ2,xt. Since the vertical structure of φ̃2 is expressed explicitly through the cosh(km+kn)(z+h)
term, the integration can be carried out similarly as for F1. We state the result as

F21

ρgπR2h
= (Cm + 1)i

N∑
m=−N

N∑
n=−N

ˆ̃Bm
ˆ̃BnF21ei((ωm+ωn)t−(km+kn)x) (10)

with the quadratic transfer function

F21 = TΦ (Ωm + Ωn) tanh (κm + κn) . (11)

4 NUMERICAL SPEED UP BY EIGENMODE DECOMPOSITION
While (10) is compact, it still requires to evaluate the double summation. We will now show how this
can be circumvented by eigenmode decomposition of the quadratic transfer function. We first observe
that the double sum for fixed x and t in (10) can be written as a matrix product

F21

ρgπR2h
= (Cm + 1)i

[
· · · ˆ̃Bmei(ωmt−kmx) · · ·

]
F21


...

ˆ̃Bnei(ωnt−knx)

...

 (12)



where F21 here is the 2N × 2N interaction matrix. Next, since F21 is symmetric and quadratic, we
can diagonalize it by eigenmode decomposition

F21

ρgπR2h
= (Cm + 1)i

2N∑
j=1

[
· · · ˆ̃Bmei(ωmt−kmx) · · ·

]
VjλjV

T
j


...

ˆ̃Bnei(ωnt−knx)

...

 (13)

= (Cm + 1) i
2N∑
q=1

λq

[
N∑

m=−N

Vqm
ˆ̃Bmei(ωmt−kmx)

][
N∑

n=−N

Vqn
ˆ̃Bnei(ωnt−knx)

]
(14)

where in the last equation, the product of the ˆ̃Bei(ωt−kx) vector and eigenvectors of each mode has
been recast into the two bracketed sums. We can interpret — and evaluate — these by applying each
eigenvector as a transfer function to the potential amplitudes. Hence, with known eigenvectors, this
operation can be made at O(N logN) by FFT, and the two (identical) pseudo timeseries can be mul-
tiplied in the time domain. Next, analogous to SVD analysis, we may be able to approximate (14) by
truncation of the active modes. Thus for a finite and fixed number of modes, the second-order force
can be computed at a computational effort of O(N logN).

Figure 1: First- and second-order force for a focused wave group. The exact and approximate method (lower).

Figure 1 shows results for a focused wave group and its force at a monopile at 33 depth. We
have chosen a JONSWAP spectrum with Tp = 10 s, a peak enhancement parameter of γ = 3.3 and a
linear crest height of 6 m. The upper panel show the first- and first+second-order solution calculated
with the Sharma & Dean (1981) theory, integrated with 40 points in the vertical. Force coefficients of
(Cm, CD) = (1.0, 1.0) have been used throughout. The lower panel compares the second-order forces
of (4) and shows a perfect match at the graphical level. We have calculated the QTF matrix on a 16 x
16 frequencies grid, used 8 modes and interpolated the pseudo transfer functions to the full frequency
vector.

5 ACCURACY AND EFFICIENCY
The accuracy of the method relies on an accurate representation of the full QTF matrix. Figure 2 thus
shows the QTF matrix for F2I and the ratio between the approximate and exact matrix for 8 modes.
We see that the QTF is quite flat and that the 8 mode approximation is accurate, with noticeable errors
only in a low frequency band, where up to 5% error occurs.

We next turn to random realizations of forces from irregular waves. For the same wave condition
as in figure 1 time series of 2, 4, . . . , 32768 seconds were calculated with the 40 point Sharma & Dean
method and the accelerated method, still based on 16-member eigenvectors for 8 modes. A resolution
of 0.1 s in time was used. An error measure was defined as Err = σF−FSD/σFSD . This error is shown
in figure 3(a) and shows that the method can compute the inertia loads with an error level of 1.5%,
while the drag loads are obtained with an error level of 5%, both independent of the length of the time
series. The efficiency of the method is demonstrated in figure 3(b), where the computational time



(a) (b)
Figure 2: The quadratic transfer function for the full force. (b) The ratio of the approximate and full transfer function.

(a) (b)
Figure 3: (a) Error as function of time series length. (b) Computational time versus time series length.

in Matlab on a standard laptop is depicted as function of time series length. The calculations also
included the moment, which however is omitted here. For the Sharma & Dean method, the Fourier
coefficients were summed up at each frequency, such that the actual time series of kinematics can
be obtained at an O(N2) effort. For the approximate method, the CPU usuage scales like N and is
always smaller than for the original method. Due to the initial solution of the 16 x 16 eigenvalue
problem, the computational time is almost constant at 0.03 s until the interpolation and FFT opera-
tions for large time series dominates. The new method is seen to be around 1000 times faster than
the conventional method for a 3 hour time series. The speed-up technique of eigendecomposition and
interpolation can also be applied to QTFs of panel method output.
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