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Flexural wave motion in viscous fluid: Stability analysis
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Highlights

• The flexural flow in the viscous fluid is studied using the linear stability analysis.

• The dynamical equation governing the infinite floating ice floe is obtained from the Euler–
Bernoulli beam equation. Further, the fluid flow is governed by the two-dimensional Navier–Stokes
equations, which are converted into the Orr-Somerfeld system using the boundary conditions.

• A spectral collocation method is employed to solve the resultant Orr-Sommerfeld system.

• The study suggests that the floating ice floe incite the instability of viscous fluid flow. Thus,
this method helps to perceive the dynamics of a floating elastic plate in the viscous fluid.

1 Introduction

The wave dynamics in the Marginal Ice Zone (MIZ) has been the subject of intensive research in recent
decades. Experimental studies have shown the significance of ice floes on ocean wave propagation, but
they lack a theoretical foundation[1]. Later, many studies developed theoretical explanations for the
observed experimental facts[2]. Although such studies work well to explain the fluid flow through the
MIZ and its wave attenuation phenomenon, there is still a need for accurate models which incorporate
the viscosity of the fluid, which is neglected in the almost all previous studies. Simulatenously there
has been a parallel interest in the stability analysis of flow systems in the past few decades[3]. Such a
theory is applied in the chemical industries, biomedical engineering and the coating industries. Here
the hydrodynamic instability is utilized in order to understand the stability of the flow system[4].
The instability of both gravity-driven and shear-driven free surface flow down an inclined plane was
performed by Chin et al. [5]. Eventually, this method was implemented to study the characteristics of
free surface flow controlled using the soluble[6] and insoluble[7] surfactants. It was observed that these
surfactants could control the surface-elasticity of the free surface. In the proposed study, the viscous
fluid is considered, and the structural parameters of the elastic plate are incorporated in the tangential
stress balance. This study allows us to understand the flexural wave motion in viscous fluid better.
From the physical viewpoint, the present study can be employed to understand the attenuation of
waves by ice floes in MIZ.

2 Mathematical formulation

The problem is studied in the two-dimensional Cartesian coordinate system with the infinitely extended
ice sheet on the mean free surface z = h. The Newtonian fluid flow is considered as incompressible
and irrotational with the direction of flow along the positive x-axis, and the positive z-axis is pointing
upward from the origin O. The bottom is considered as rigid, whereas the deflection of ice sheet on
the surface is denoted as z = η(x, t). The dimensionless equations governing the fluid flow beneath
the ice sheet are given by the two-dimensional Navier-Stokes equations

∂xu+ ∂zw = 0, (1)

∂tu+ u ∂xu+ w ∂zu = −∂xp+
1

Re
∇2u, (2)

∂tw + u ∂xw + w ∂zw = −∂zp+
1

Re
∇2w −G, (3)
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Figure 1: Schematic sketch of fluid flow under the infinite extended floating ice-sheet in viscous fluid

where p be the pressure inside fluid flow, u and w are the horizontal and vertical components of the
velocity, respectively. Further, non-dimensional form of the acceleration due to gravity is given by
G = gh/U2, where g and h are the acceleration due to gravity and mean free surface, respectively.
Moreover, the characteristic velocity scale is denoted as U = gh2/ν with ν being the kinematic viscosity
of fluid. At ice-covered surface, the kinematic condition along with the tangential and normal stress
balance conditions are given by

w = ∂tη + u ∂xη for z = η(x, t), (4)(
∂zu+ ∂xw

)(
1− (∂xη)2

)
− 4 ∂xu ∂xη = 0 for z = η(x, t), (5)

Rep =
2

1 + (∂xη)2
{

(∂xu)(∂xη)2 −
(
∂zu+ ∂xw

)
∂xη + ∂zw

}
+ ᾱ

∂2

∂x2
∂2xx η

(1 + (∂x η)2)3/2

+β̄
∂2xx η

(1 + (∂x η)2)3/2
− γ̄ Re ∂2tt η for z = η(x, t), (6)

where ᾱ = EI/ρ gh4, β̄ = N/ρ gh2, and γ̄ = mp/ρ h are the non-dimensional form of the structural
rigidity, compressive force and mass per unit length, respectively with ρ is the density of fluid. It is
assumed that sea bottom is rigid, thus the boundary condition is given by

u = 0 and w = 0 for z = 0. (7)

The base state of the fully developed flow is obtained by considering ~v = (uB(z), 0) and ~p = (pB(z), 0),
where uB(z) and pB(z) be the base state of velocity and pressure, respectively. By solving the
equations (2)–(3) along with the boundary conditions (4)–(7) using the above vectorial notation,
yield the following solution

uB(z) = tanh(2z), (8)

pB(z) = G(1− z). (9)

In the case of velocity base profile (as in Eq. (8)), it is approximated using the tangent hyperbolic
function in order to impose the shear rate inside the flow. This, in turns, increases towards the
surface. Now, the base state excited with the small disturbance using the perturbation technique. All
the dynamical variables are represented as follow

u(x, z, t) = uB(z) + ũ(x, z, t), (10a)

w(x, z, t) = w̃(x, z, t), (10b)

p(x, z, t) = pB(z) + p̃(x, z, t), (10c)

η(x, t) = 1 + η̃(x, t), (10d)

where p̃, η̃, ũ and w̃ denote the perturbed pressure, deflection, horizontal and vertical velocities,
respectively. Further, the perturbed velocity along the horizontal and vertical directions are defined
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as ũ = ∂zψ and w̃ = −∂xψ, where ψ be the stream function. Using the normal mode analysis, the
stream function and the perturbed deflection are given as,

ψ(x, z, t) = φ(z) eik(x−ct) and η̃(x, z, t) = ζ(z) eik(x−ct), (11)

where c and k be the complex-valued wave speed and wavenumber, respectively. Expressing the
governing equations (1)–(3) along with the boundary conditions (4)–(7) using the (10)–(11) yield the
following Orr-sommerfeld system

(d2z − k2)2 φ− ikRe
[
(d2z − k2)(uB − c)− d2zuB

]
φ = 0, (12)

dzφ = 0 and φ = 0 for z = 0, (13)

φ+ ζ(uB − c) = 0 for z = 1, (14)

d2zuB ζ + (d2z + k2)φ = 0 for z = 1, (15)[
d3z − 3k2dz − ikReuBdz + ikRedzuB

]
φ+

[
− 2ik − 2k2dzuB − ᾱik5 + β̄ik3

]
ζ[

ikRedz − ik3Reγ̄
]
(cφ)− ik3γ̄ReuB(cζ) = 0 for z = 1, (16)

where dz be the derivative with respect to z. It may be noted that for ᾱ → 0, γ̄ → 0 and β̄ =
−β̄0Re−2/3 with β̄0 = (σ/ρ)(2/gν4)1/3 in (12)–(16) give the Orr-Sommerfeld system for the fluid flow
having free surface with surface tension β (as in Chin et al. [5]).

3 Results and discussion

Here, the Orr-Sommerfeld system (12)–(16) is solved numerically using the spectral collocation method.
Using the linear mapping technique, the physical interval [0, 1] is transformed into the computational
interval [−1, 1] and discretized by the Chebyshev polynomial. After solving, the complex-valued eigen-
values c = cr + ici are obtained for a certain wavenumber k. Further, the spatio-temporal growth rate
is defined as ωi = kci with ci being the imaginary part of c. The stability of fluid depends on the
signs of ωi: ωi < 0 (stable), ωi > 0 (unstable) and ωi = 0 (neutral). Apart from this, the deflection
of ice floe and velocity flux of fluid under the ice sheet are analyzed. It is worth to be pointed that
in the present physical model, β̄ behaves as compressive force on the ice floe. However, the external
compressive force acting on the floating ice floe is neglected here.
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Figure 2: Growth rate kci against the wavenumber k for different values of (a) structural rigidity ᾱ
with γ̄ = 0.001 and Re = 1000, (b) mass per unit length γ̄ with ᾱ = 0.3 and Re = 1000, and (c)
Reynolds number Re with ᾱ = 0.3 and γ̄ = 0.001.

In Figs. 2(a), (b) and (c), the spatio-temporal growth rate of the most unstable mode (kci) is plotted
as a function of wavenumber (k) for different values of structural rigidity (ᾱ), mass per unit length
(γ̄) and Reynolds number (Re), respectively. In general, the variation of growth rate against the
wavenumber is two-fold (i.e., the growth rate initially increases and attains maximum value, then
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decreases for an increase in the value of k). Moreover, the parameters such as structural rigidity and
mass per unit length have the stabilizing effect on the fluid flow (Figs. 2(a) and (b)), whereas the
Reynolds number has a stabilizing effect till k ≤ 1.2 and destabilizing effect for the values of k > 1.2.
On the other hand, in the case of Fig. 3, the horizontal velocity u in the fluid domain is compared
for the both free surface (Fig. 3(a)) and plate-covered surface (Fig. 3(b)). In general, from both the
figures, it is observed that the horizontal velocity increases at the surface for both the free surface and
plate-covered surface. However, the velocity of fluid flow decreases in the presence of a floating elastic
plate as compared to that for the free surface.
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Figure 3: Distribution of the horizontal velocity u in the fluid domain for the (a) free surface (ᾱ = 0,
γ̄ = 0, Re = 1000 and β̄0 = 1200), and (b) plate-covered surface (ᾱ = 0.3, γ̄ = 0.001, Re = 1000 and
β̄ = 0).

Further results will be presented in the workshop.
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