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Introduction

Wave energy converter (WEC) arrays consist of devices extracting energy from their oscillatory motion.
We define large WEC arrays as those consisting of N = O(100) devices. Through favorable wave in-
teraction, the extracted energy by a N -body WEC array can be significantly larger than that extracted
by the same number of isolated devices. This increase in extraction performance is quantified by the
array gain q(k, θI) = P (k, θI)/(N P0(k)), where P is the power extracted by a N -body WEC array in
monochromatic waves of wavenumber k incident at an angle θI , and P0 is the power extracted by a single
axisymmetric constituent body when operating in isolation in the same incident wave.

In addition to k and θI , the array gain q strongly depends on the spatial array configuration. A full
diffraction and radiation formulation of the wave-body interactions in large WEC arrays is a compu-
tationally complex problem. As a result, optimization studies of WEC array configurations have been
limited to arrays of small number of bodies (N = O(10)) [1, 2, 6]. A common approximation to allow for
the calculation of q in larger arrays is to assume that the devices are so-called point absorbers, which do
not scatter waves, so the overall wave field consists of incident and radiated waves only. This results in a
much simpler calculation of q, and the optimization of much larger WEC arrays is computationally feasi-
ble [e.g. 3]. However, the point-absorber approximation is valid when the body size a is small (ka� 1),
so when the scattering is strong (ka = O(1)), important physical phenomena are not modeled correctly
[e.g., see 8].

Here we present a fast method for optimizing the performance of large WEC arrays with O(100)
bodies, taking into account the exact wave interaction hydrodynamics. The wave-body interaction is
based on a novel formulation [7, 8] of the classic multiple scattering framework [4]. The gradient of the
objective function required for gradient-based optimization algorithms is calculated using the fast adjoint
method. We present results of spatial configuration optimization of rectangular arrays with up to 150
bodies and up to 53 optimization variables, with the objective of obtaining maximum array gain q. These
represent the largest WEC arrays optimized to-date where the full diffraction and radiation problem is
taken into account.

Mathematical model

We consider linear incident waves governed by potential flow and interacting with an array of oscillating
bodies; we assume body motions are small. We express the total potential in terms of the incident wave
and the scattered and radiated waves from each body, and expand these in terms of partial waves [5].

Within the novel formulation of multiple scattering theory [7, 8] the dependency of the resultant
wavefield on the spatial array configuration is encoded in the separation matrix alone, a matrix whose
components depend on the distance between bodies i and j only; all the body-related quantities are ex-
pressed through transfer matrices obtained for a body in isolation (diffraction transfer matrix, diffraction
force transfer matrix, dynamics+radiation transfer matrix). The unknown amplitudes of the scattered
and radiated partial waves are obtained from imposing the boundary conditions on each body (expressed
through diffraction transfer matrix). This results in a global coupled linear system for the unknown
complex scattered partial wave amplitudes c(

I−T (S(C))T H
)

c = T d(C) , or A(C) · c = b(C) . (1)



Here, I, T and H are block-diagonal identity, diffraction transfer and radiation transfer matrices, re-
spectively (each diagonal block corresponds to one body); S is the global separation matrix dependent
on the configuration C (the superscript (·)T denotes a matrix transpose); d is the global block incident
wave vector. The M ×M complex system matrix A and the M × 1 complex vector b depend on C.
The size of the system M = N ×Nw depends on the number of bodies and the total number of partial
waves Nw. The expression (1) is in principle exact (other than the truncation to Nw partial waves), i.e.
the full diffraction problem is taken into account, including the effects of evanescent waves. It is valid
for bodies of general shape (not necessarily all equal) that can be fixed (H ≡ I), freely oscillating or
extracting energy. The extracted power by an array can be expressed as P = c+Ω c, where Ω is a known
block-diagonal power extraction matrix; q is calculated from P following its definition.

For the optimization problem, the configuration C is parameterized by a vector of optimization vari-
ables χ, so the array gain can be expressed as q(χ; c(χ)). The total gradient dq/dχ of array gain q with
respect to χ can be expressed as
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where ∇a g stands for a gradient of a general (scalar, vector or matrix) function g with respect to a vector
a. While∇cq is easily found (the expression is analytically available), finding∇χc = A−1 [∇χb− (∇χA) · c]
is a very cumbersome process (requires solving M ×M linear system Np times). The entire trick of the
adjoint method lies parenthesizing differently the right hand side of (2) — instead of calculating and
multiplying ∇cq · ∇χc term by term, we can regroup the terms and recognize that the adjoint λ is the
solution of an adjoint linear system AT ·λ = (∇cq)

T . This M ×M system is independent of the number
of optimization variables Np, and has the same complexity and characteristics as the original problem.
This way, we only need to solve two M×M systems during each step of the optimization process, instead
of 1+Np systems if we had done it in the straight-forward way. We term the matrix B = ∇χb−(∇χA) ·c
in equation (2) the “adjoint Jacobian”. As the array goes through the changes in the spatial configuration
during the optimization, only the separation matrix S(C) and the incident wave vector d(C) in (1) need
to be updated; the body-related transfer matrices remain constant. Further details are given in Tokić [7].

Results

We optimize here spatial configurations of rectangular arrays for maximum gain q at a particular wavenum-
ber k for a range of incident angles θI . The arrays consist of Nx = 3 rows of bodies in x-direction, with
Ny bodies laid in y-direction in each row, totaling N = Nx × Ny bodies. The spacing between the
rows (in x-direction) is denoted by c1 and c2. The shifts in the y-direction of the second and third row
relative to the first one (facing the incident wave) are s1 and s2, respectively. The spacing di between
the bodies in y-direction is the same in every row, and it is denoted by d1, . . . , dN−1. In total, there is
Np = 2× (Nx − 1) + (Ny − 1) optimization variables (χ =

{
c1, c2, s1, s2, d1, . . . , dNy−1

}
) parameterizing

the array configuration. In particular, we optimize Nx×Ny = 3× 25 and 3× 50 arrays (75 and 150 bod-
ies), resulting in 28 and 53 optimization variables, respectively. The arrays consist of truncated vertical
cylinders of radius a = 0.3h and draft H = 0.3h, where h is the uniform water depth. The power take-off
rate is chosen such that at body resonant wavenumber kr, an isolated body extracts maximum possible
energy, i.e. capture width W = 1/kr [e.g. 5].

The array gain q is a highly multimodal function of k, θI and array configuration. In order not
to get trapped in one of the local maxima that are significantly below the global optimum, the spatial
configurations for every θI are initialized as uniform-spacing arrays that achieve maximum q. The initial
uniform spacings c0 and d0 are obtained from a known q(c, d) function for 3× 20 arrays, Figure 1 [7].

The optimal gain q∗ and corresponding optimal row spacings and shifts of 3×50 arrays for a range of
incident angles are shown in Figure 2. The improvement over the initial gain q0 is especially prominent



Figure 1: Array gain q of uniformly spaced 3×20 arrays as a function of spatial configuration (spacings c
and d in x- and y-direction, respectively) at body-resonant wavenumber kr and for three incident angles
θI . The chosen initial configurations c0 and d0 are marked by magenta circles for each θI . The gain q for
larger θI exhibits a similar character as that presented here, albeit with lower overall values.

for larger incident angles θI , where q∗ is up to ∼30% better than q0. The row spacings c∗1 and c∗2 do
not deviate significantly from the initial values c0, and they remain almost identical to each other. The
y-direction row shifts s∗1 and s∗2 become non-zero for non-zero incident angles, and a relationship between
the row shifts s∗2 ≈ 2s∗1 is approximately valid. This indicates that the array configuration approximately

forms a lattice. The angle γ of the row-wise lattice vector is γ ≈ arctan
s∗1
c∗ , or γ ≈ arctan

d∗−s∗1
c∗ , where

the chosen expression is based on the first body in the back row that has equal or larger y-coordinate.
Interestingly, angle γ of the lattice vector is closely proportional to θI , indicating that the bodies in the
back rows of the optimal configurations are placed such that they are directly behind the one in the front
row along the incident propagation angle, and not such that they are “out of the shadow” of the front
row.

Figure 2: Optimal 3×50 rectangular array. (a) Optimal gain q∗, initial gain q0 (left axis), increase in gain
∆q = (q∗ − q0)/q0 (right axis). (b) Optimal x-spacing c∗i (left axis), the average of optimal y-spacings
d∗i (right axis). Initial values are plotted in dashed line. (c) Optimal y-shifts s∗i (left axis). The shifts
are initially zero (dashed red line). The angle γ of the row-wise lattice vector (right axis). The γ = θI
(dashed black line) is added for reference.

The optimal spacings d∗i along the y-direction for Ny = 25 and Ny = 50 arrays for three incident
angles is shown in Figure 3. The initially uniform spacing d0 is now oscillating between the bodies, with
oscillations ∆d∗i ≡ (d∗i − d∗i )/d∗i being larger at the edges of the array (d∗i is the average of the optimal



spacings d∗i ). For Ny & 25, the number of bodies in a row Ny no longer affects the optimal spacing as
the corresponding spacings (counted from the rows’ ends) for Ny = 25 and Ny = 50 arrays are almost
identical. For normal incidence, the optimal spacings d∗i are symmetric with respect to the middle of the
row. With the increase in incident angle, the asymmetry between optimal spacings at the two ends of
the row grows. The optimal spacings d∗i for incident angles θI > 30◦ follow the same characteristics as
presented here.

Figure 3: Optimal spacing d∗i for 3 × 25 and 3 × 50 array for three different incident angles θI as a
function of the spacing index i (spacing between bodies i and i+ 1 in a row). The negative indices i refer
to counting from the end of the row. The average optimal spacing d∗i for the 3 × 50 array is stated for
reference.

Discussion

The results presented here indicate that further improvements in array gain q are possible (up to ∼ 20%)
if the spatial configuration of large WEC arrays is optimized. The presented method is applicable to
general array configurations consisting bodies of general shape operating in general sea states, i.e. no
assumption on the body size, the character of the diffraction problem, or on optimality of body motion
is imposed. Together with its computational efficacy, this makes the presented method also well-suited
for optimization of large arrays in broad-banded seas.
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