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Highlights: 
 Nonlinear diffraction problem of a 2D box are solved with application of the Scaled Boundary FEM 

 Radial functions are obtained analytically for velocity potential and its derivatives of on body boundary  

 Analytic method is used to integrate the singular derivative of velocity potential at corners and to 

improve the accuracy of nonlinear forces. 

 

1 Introduction 
Nonlinear effect has been acknowledged as an assignable component in hydrodynamic analysis. To obtain 

the quantities of high order force, derivatives of velocity potential have the priority to be accurately worked 

out.  

However, difficulty exists in the calculation of tangential velocity on body surface, especially in constant 

panel method (CPM). This problem is relieved with the development of high order boundary element method 

(HOBEM). Compared with CPM, HOBEM improves the accuracy and convergence for general cases (Choi et 

al[1]), but still remains aporias. One of them is the singular effect of corners, which has been ignored or 

simplified technically in traditional approaches.  

Attributed to the discontinuity of boundary condition, singularity usually occurs at sharp corners of bodies. 

Since the velocities soar to infinite in the vicinity of corners, this kind of singular behavior could no longer be 

precisely described by discrete method merely. In HOBEM, the variation trend of derivatives on body surface 

is interpolated with linear or quadratic curve, which disobeys the theoretical analysis as well. These errors 

contribute to the divergence of nonlinear forces as pointed out by Zhao and Faltinsen[2], and Teng et al[3]. 

Thus, analytic approach is supposed to provide more convincing explanation on singularity. Scaled 

Boundary FEM (SBFEM) is such a numerical approach that provides analytic means to study on this project. 

In SBFEM, scaled coordinates are founded, and the solution is analytic in the radial direction, named as 

‘radial function’. The radial function has an explicit formulation with fine smoothness that has effect in 

computing the singularity. In addition, the integration of derivatives of velocity potential at corners can be 

computed analytically with the radial function. Results show Scaled Boundary FEM has higher efficiency and 

accuracy compared with HOBEM for body with corners. 

 
2  Scaled Boundary FEM solution of potential flow problem  
2.1 Scaled coordinates 

SBFEM defines the domain by scaling similar-curve relative to a scaling center (x0, z0). Take a 2-D domain 

with a breach for example (Fig.1). The scaling center is set at the corner, where is supposed to exist a singular 

problem. The circumferential coordinate s is anticlockwise along the similar-curve, and the radial coordinate 
  is the ratio of similar-curve to the circumferential boundary (Fig. 1-b). 



34th International Workshop on Water Waves and Floating Bodies, 7th–10th April, Newcastle, 2019 

The Cartesian coordinates are transformed to the scaled coordinates with the following formulas 
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where [N(s)] is the shape function, (x, z) are the Cartesian coordinates of the discrete nodes. What is worth 

mentioning is, unlike boundary element method, only the circumferential boundary is discretized in this 

approach (Fig. 1-b). 

2.2 Scaled-Boundary FEM equation 
An approximate solution of   is described as a product of circumferential function S(s) and radial function 

a(ξ)  
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in which analytic solutions are adapted for the radial function {a(ξ)}, and numerical discretization with shape 

function [N(s)] is applied for the circumferential function. 

By applying the weighted residual method, an integral equation is achieved for the fluid domain Ω 

surrounded by the body boundary Γb  0 1,I E s s or s      and a single piecewise-smooth curve S 
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where the weight function shares the form of velocity potential w(ξ, s) =[N(s)] {w(ξ)}, ξI and ξE are the radial 

coordinates of the inner and outer boundaries of the computation domain, which are selected as zero and unit 

in this paper, and s0 and s1 are the circumferential coordinates of two ends of curve S. 

As a result of separation of variables, the integral of S is calculated into constant coefficient matrix [E0], [E1] 

and [E2] beforehand. 
Finally a Scaled Boundary FEM equation could be obtained due to the arbitrariness of {w(ξ)},  
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along with the circumferential boundary condition 
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The radial boundary condition is contained in the nonhomogeneous term in Eq. (4), representing the motion 

of body surface. Detailed formula derivations are available in previous articles [4]. 

2.3 The radial function and singularity of velocity 

The Scaled Boundary equation (4) is solved analytically with eigenvalue method 
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where the diagonal matrix [Λ] is made up of the nonnegative eigenvalues λ1, λ2, λ3, … of Eq. (4). The 

coefficient matrix [A] has been worked out along with the eigenvalues, while the vector {c} remains to be 

determined. Particular solution {a(ξ)}S is to satisfy the nonhomogeneous term. 

Then, the radial function at node i is formulated in a power series  
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It can be found that λ1 is between 0 and 1 when (x0, z0) is at a corner. 

The tangential derivative of velocity potential on body surface can be calculated analytically by 
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which will include singularities at a corner. The second derivatives have a similar form containing {a(ξ)}ξξ in 

addition. 

 

3  Numerical Results and Discussion 

A comparison study on the second order exciting force on a 2D box is made between the Scaled Boundary 

FEM and a HOBEM model with Rankine source. Velocity potential derivatives and wave forces on a 2-D 

floating box are calculated. The box is in a water depth of d, and has a draft of T/d=0.2 and half width of 

B/d=0.2. The whole computational domain is divided into 5 subdomains, and the radiation boundaries are set 

at x=+/-1.2d. To simulate the singularity property, the scaled centers of the two subdomains adjoin to the body 

are set at the submerged corners (Fig. 2). Three meshes with 46, 93 and 140 elements are applied for SBFEM, 

and four meshes with 216, 448, 680 and 920 elements are applied for the HOBEM model for convergent 

studies. 

For convenience of analysis, the second order exciting force is divided into three components: 
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where f22 is the term from the second order potential, f21,a the term from waterline integration and f21,b the term 

from the integration of first derivative of velocity over body surface, Figs. 3 and 4 are validations of the 

former two parts, and show that the agreements are very good even with the coarse meshes. 

Since the singularity of velocity causes noticeable divergence, f21,b deserves a convergence research. In the 

SBFEM model, an analytic method is used for the integration of the square of tangential derivative of velocity 

potential on body surface 
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where vn and v and are the normal and tangential derivatives of velocity potential on body surface. The former 

is known and the latter is expressed by Eq. (7). The overline and superscript S represent the components of 

velocity potential satisfying the homogeneous and nonhomogeneous body boundary conditions in Eq. (4) 

accordingly. 

Figs. 5 and 6 are convergent studies on HOBEM and SBFEM, and show that the SBFEM converges more 

quickly. Fig. 7 shows the comparison between SBFEM and HOBEM with the finest meshes. It can be seen 

that the result of SBFEM is noticeably larger than that of HOBEM. We suppose that the difference is due to 

the methods in treatment of the ξ-1/3 singularity of fluid velocity at the corner.  

Fig. 8 is the comparison of the second order mean drift forces by SBFEM with mesh 3 and HOBEM with 

mesh 4. Similar conclusion can be seen. 

 

4  Conclusions 

On basis of SBFEM, research on the singular problems of corners is carried out. We proposed the analytic 

expressions for first and second derivatives of velocity potential on body surface, which is superior to the 

discrete expressions by HOBEM. Hence, the pressure integration on body surface are implemented 

analytically, with the singular feature adequately considered. Numerical examinations demonstrate the results 

of SBFEM converge more quickly than those of HOBEM for a body with sharp corner.  

 



34th International Workshop on Water Waves and Floating Bodies, 7th–10th April, Newcastle, 2019 

References  
1. Choi Y R, Hong S Y, Choi H S. An analysis of second-order wave forces on floating bodies by using a higher-order 

boundary element method, Ocean Engineering, 2000, 28: 117-138. 
2. Zhao R and Faltinsen O M, Interaction between Current, Wave and Marine Structures, Proc. 5th Int. Conf. on 

Numerical Ship Hydrodynamics, 1989, 513-525, Hiroshima.  
3. Teng B, Bai W, Dong G H, Simulation of Second-order Radiation of 3D Bodies in Time Domain by a B-spline 

Method, Proc. of ISOPE，2002, 3, 487-493, Kyushu. 
4. Deeks A J, Cheng L, Potential flow around obstacles using the scaled boundary finite-element method, International 

Journal for Numerical Methods in Fluids, 2003, 41(7), 721-741. 
 

   

(a) Cartesian coordinate system   (b) Scaled coordinate system        

Fig.1 Discretization and coordinate transformation            Fig.2 The discretization for SBFEM 

 

  

Fig.3 The term of 2nd-order potential      Fig.4 The term on waterline      Fig. 5 Convergence of f21,b (HOBEM) 
 

 

  

   Fig. 6 Convergence of f21,b (SBFEM)       Fig. 7 Comparison of f21,b             Fig. 8 2nd-order mean force
 


