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INTRODUCTION

Computational Fluid Dynamics (CFD) has become increasingly used as a design tool for ships and offshore
structures. Although CFD captures more relevant physics than traditional Boundary Element Methods (BEM),
the improved accuracy comes at a cost. CFD simulations are both computationally intensive and time consuming
to complete. At the University of Michigan are working on developing more efficient CFD methods while not
sacrificing the advantageous features.

Methods utilized for evaluation of a ship’s maneuvering capabilities in calm water are generally grouped into
two categories; 1) Abkowitz [1] methods requiring an experimental test campaign, and 2) analytic/numerical
methods. The Abkowitz methods derive hydrodynamic forces - either for the whole ship/rudder/propeller
system or for some subset of components - as Taylor series expansions about a base operating condition. With
the coefficients, the fluid forcing is determined for the equations of motion and they can be solved in real time.
The method generally manages to capture hull/propeller/rudder interactions and, once the coefficients have
been determined, has proven to accurately and efficiently predict some maneuvering responses in calm water.
The method is challenged when the forces are evaluated for an operating condition that is dissimilar from the
experimental base operating condition.

The analytic/numeric approaches can use CFD, potential flow, experimental data, or some combination. For
example, the Maneuvering Modeling Group (MMG) models derive hydrodynamic forces from a combination
of experimental data and/or analytical formulae. Typically the experimental force coefficients are determined
independently and interactions are described through standard hull/propeller matching methods. The MMG
method has been extended to include wave forces through use of the BEM [5, 6, 7]. Challenges encountered
with the modular MMG method are that empirical estimates for various components of the force and their
interaction are required.

The primary goal of this research is to develop a numerical method motivated by the previous MMG theories
that will have comparable accuracy to the Abkowitz methods without the need for a costly experimental
campaign. Further, the aim of the method is to achieve better prediction in the operating conditions not
captured by the experiment through use of CFD, such as capturing separation effects in the flow. While CFD
exists as an accurate alternative to model testing, resolving the free surface is often too costly for use in the design
phase. This research proposes a combination method where the BEM and single-phase Unsteady Reynolds-
Averaged Navier Stokes (URANS) equations are solved simultaneously. In this way, interaction between the
hull and rudder can be simulated directly through the CFD and the wave modeling is effectively handled by the
BEM. The work presented herein does not address propulsive forces but does attempt to capture hull/rudder
interaction. Results from the proposed method are compared against experimental data for a forced motion
Planar Motion Mechanism (PMM) test with attached rudder and rotating propeller [4]. The long-term goal is
a co-simulation model including the propeller for large amplitude horizontal plane maneuvering in waves.

METHOD

The method presented here utilizes CFD to solve the equations of fluid motion for a single-phase incompressible,
viscous fluid. The fluid pressure and viscous forces are derived from the equations of fluid motion solved on
a grid moving with a prescribed PMM maneuver. The total fluid force on the body from the CFD, denoted
~FURANS, is one component contributing to maneuvers in the horizontal plane and becomes an increasingly better
estimate for low Froude number maneuvers. The forcing from radiated waves is handled more efficiently by the
BEM and is denoted ~Fmem. This work proposes a combination of the two force components to reconstruct the
total hydrodynamic force encountered during a PMM maneuver in calm water.

The combination procedure employs CFD to predict frictional resistance and double-body pressure. These
components of force are calculated from the conservation laws for mass and momentum written in Arbitrary
Eulerian Lagrangian form. These equations are solved in an Earth-fixed frame for a single-phase fluid with



Reynolds stresses modeled using a two-equation k − ω SST turbulence model. The solution of this system of
equations is referred to within this work as the Unsteady Reynolds-Averaged Navier-Stokes equations as shown
in Equation 1. ∫
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The conservation equations are solved using the open source toolkit OpenFOAM, which uses a cell-centered
finite volume discretization on arbitrary polyhedral cells. The CFD mesh used in the current simulations
contains a discretized rudder but currently no representation of a propeller; a propeller model will be added in
the future. The total hydrodynamic force on the body is computed as in Equation 2, where σ is the total stress
tensor.

~FURANS =

∫
S

σ · n̂ dS (2)

The wave radiation forces are calculated by a higher-order BEM, Aegir [2], which utilizes higher-order
representations of the geometry and velocity potential. Aegir is a direct BEM and distributes sources and dipoles
on the body-mean position and across the calm water surface and numerical beach. The total perturbation
potential is linearized about the free-stream (Neumann-Kelvin linearization) and is split into two components
to solve for the fluid response to the forced-motions problem. In Aegir, the impulsive part of the potential that
handles unsteady body motions is called the local potential and is denoted φloc. The component satisfying the
free surface conditions is referred to as the memory flow potential and denoted φmem. The total perturbation
potential is linearly decomposed according to Equation 3.

Ψ(~x, t) = φloc(~x, t) + φmem(~x, t) (3)

Due to the linearization of the problem, each potential is subject to the same form of the Boundary Integral
Equation (BIE), but with different boundary conditions, forming two unique Boundary Value Problems (BVP).
The BIE for the direct solution of the total perturbation potential is of the general form shown in Equation 4.
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In this work, the body boundary condition is linearized about the body-mean position. In the frame of the
body’s mean position the unit direction î is positive towards the bow, ĵ is positive to port, and k̂ is vertically
up. The displacements from the mean are the six degrees of freedom surge, sway, heave, roll, pitch, and
yaw. The translational degrees of freedom are denoted ~ξT = (ξ1, ξ2, ξ3) and the rotational degrees of freedom as
~ξR = (ξ4, ξ5, ξ6), such that the first order displacement vector at any point on the body surface is ~δ = ~ξT +~ξR×~x.
Using the Neumann-Kelvin approximation, the body boundary conditions are satisfied on the mean position
of the body, whose surface is denoted SB and moves at constant speed Uc. As a result, the velocity of the

body-mean position is ~W = Ucî where Uc is the carriage speed. The boundary conditions to be met by φloc

are:
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where
(n1, n2, n3, n4, n5, n6) = (n̂, ~x× n̂)

(m1,m2,m3) = (n̂ · ∇) ~W = (0, 0, 0)

(m4,m5,m6) = (n̂ · ∇)
(
~x× ~W

)
= (0,+Ucn3,−Ucn2)

The memory flow BVP governs the radiated and diffracted wave fields. In this work, the calm water
maneuver is prescribed and only the radiation problem is solved. The BVP for φmem is governed by the body
boundary condition and the free surface boundary conditions in Equations 6 and 7.

∂φmem

∂n
= 0 on SB (6)



The kinematic and dynamic free surface boundary conditions are listed in Equation 7, where ζ is the radiated
wave elevation and φmem is the memory flow velocity potential.
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The radiated wave force is obtained by integrating the pressure from the memory flow velocity potential over
the body-mean position as in Equation 8.

~Fmem = −ρ
∫
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∂

∂t
− ( ~W · ∇)

)
φmem · n̂ dS (8)

RESULTS

The KRISO Container Ship (KCS) [3] is the chosen hull for this study. A 1/52.67 geosim of Lpp = 4.367 m is
simulated and commanded through two PMM maneuvers. The first maneuver is a pure sway maneuver with
sway amplitude ξ2 = 0.127 m. The second PMM maneuver is a pure yaw maneuver with sway amplitude
ξ2 = 0.297 m and yaw amplitude ξ6 = 4.7 deg. Both PMM maneuvers are executed with a period of 13.33
seconds and at Froude number Fn = 0.26. In both cases the time series for each individual force component -
the total force from the single-phase URANS and the force from the memory flow BVP - is plotted in addition to
the sum of components and compared with experimental data submitted by Force Technology to the SIMMAN
2014 Workshop [4].

Pure Sway Maneuver The force and moment time series are shown for three full cycles of the pure sway
maneuver in Figure 1 and compared to the one cycle of reported experimental data [4]. The experimental data
was phased by synchronizing the recorded experimental motions with the forced motions that were numerically
simulated. The total force from the URANS simulation shows it to be in phase with the derived experimental
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Figure 1: Hydrodynamic force and moment time series for pure sway PMM.

hydrodynamic sway force and nearly represents the entire hydrodynamic response. The memory component of
force from the BEM has a small phase difference relative to the CFD and, when added to the URANS results,
produces a result close to the maximum measured sway force. The combination of the CFD and wave radiation
forces slightly overpredicts the maximum moment and predicts almost double the minimum moment. It is
noteworthy that the experiments featured a rotating propeller which was controlled to maintain constant rpm.
The propeller could account for some of the asymmetry in hydrodynamic moment observed in the experimental
data.

Pure Yaw Maneuver The force and moment time series are shown for three full cycles of the pure yaw
maneuver in Figure 2 and compared to the one cycle of reported experimental data [4].

The sway force from CFD is transformed to the ship-fixed frame and plotted with the memory flow component
of force from the BEM. The addition of force components reproduces a sway force time series in the ship-fixed



frame that is very comparable to the measured response, with the exception of a higher frequency component
noticeably present in the experimental data. The cause of the higher frequency is unknown at present. The
hydrodynamic moment from the combined CFD/BEM forcing produces a comparable minimum yaw moment
but there is significant asymmetry again in the experimental data. The predicted moment does not manage to
capture this asymmetry and underpredicts the maximum yaw moment.

0 10 20 30 40

Time, t [sec]

-10

-5

0

5

10

15

S
w

a
y
 F

o
rc

e
 [

N
]

F
y
 URANS

F
mem

 BEM

F
y
 URANS + F

mem
 BEM

Exp.

0 10 20 30 40

Time, t [sec]

-40

-30

-20

-10

0

10

20

30

40

Y
a
w

 M
o

m
e
n

t 
[N

m
]

M
z
 URANS

M
z-mem

 BEM

M
z
 URANS + M

z-mem
 BEM

Exp.

Figure 2: Hydrodynamic force and moment time series for pure yaw PMM.

The authors noted an inconsistency in the presented approach that will be corrected in time for the Workshop.
The single-phase URANS simulations impose zero vertical velocity on the calm water plane and so the pressure
and viscous forces predicted from the CFD are effectively a zero Froude number approximation. The forces from
the local flow BVP were removed from the total force extracted from Aegir. However, the local forces represent
the infinite frequency added mass and damping forces as is evident by the definition of the local flow BVP in
Equation 5. The added mass and damping due to the waves are calculated relative to the infinite frequency
limit to produce the total added mass and damping.

The method explained herein is restricted to small amplitude forced motions due to the formulation within
Aegir. A strategy to extend the formulation to handle large amplitude maneuvers in the horizontal plane will be
presented at the Workshop. To achieve this, the body boundary condition due to slowly varying horizontal plane
maneuvers must be satisfied by a zero Froude number approximation in Aegir so that wave forces extracted
from the memory flow BVP are those relative to zero frequency added mass and damping. In the updated
method, the URANS and basis flow will both satisfy consistent double-body problems, and the wave flow will
be a perturbation.
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