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1 INTRODUCTION

The problem about uniform motion of a load has been thoroughly studied for the homogeneous ice
sheet that covers the water surface completely. To our knowledge, this problem was first solved by
Dotsenko (1976). This solution is also presented in Cherkesov’s book (1980). Many studies on this
topic were summarized by Squire et al. (1996). In the case of inhomogeneous ice cover, there are only
some solutions of particular problems. The examples of solutions for a moving load in the case of
bounded ice cover can be found in the book by Zhestkaya and Kozin (2003). The basic equations of
motion of ice plate and fluid were numerically solved using the finite-element method. The behavior of
a very large rectangular elastic plate, which simulates a floating airport during the takeoff and landing
of the aircraft, was studied by Kashiwagi (2014). The problem of ice deflection due to a moving load
was solved by Brocklehurst (2012) in linear and nonlinear formulations for a semi-infinite ice plate
clamped to a vertical wall. Hydroelastic waves caused by a load moving along a frozen channel were
studied by Shishmarev et al. (2016)

In this paper, we present the solution of a steady three-dimensional problem for flexural-gravity
waves generated by a local pressure distribution moving with uniform speed along the rectilinear edge
of semi-infinite ice sheet. This load simulates the air-cushion vehicle (ACV). Three configurations are
considered: (i) the surface of the fluid is free outside of ice sheet; (ii) two semi-infinite ice sheets (may
be of different thickness) divided by a crack with free edges; (iii) the fluid is bounded by a rigid vertical
wall and the edge of an ice cover may be both free or clamped. The problem is formulated within
linear hydroelastic theory. The fluid is assumed to be inviscid and incompressible and its motion is
potential. The ice sheet is treated as an elastic thin plate using the Kirchhoff-Love model. The vertical
displacements of ice sheet and free surface are determined at different speeds of ACV, as well as the
forces acting on it in horizontal directions.

2 MATHEMATICAL FORMULATION

Let us consider the statement of the problem in the most complicated configuration (ii). The results
for the cases (i) and (iii) are briefly presented by Sturova and Tkacheva (2017). Two semi-infinite
elastic plates of thicknesses h1 and h2 float on water of depth H, and the edges of the plates are free.
The plate drafts are ignored. The pressure distribution P (x, y) moves with constant speed U along
the rectilinear edge of the right plate. The moving Cartesian coordinate system x, y, z is considered
with the x-axis passing through the center of the pressure region perpendicular to the edge of the
plate, the y-axis is directed along the crack and the z-axis is directed vertically upwards.

The boundary-value problem for the velocity potential ϕ(x, y, z, t) and deflection of ice sheet
w(x, y, t) can be written as

∆3ϕ = 0 (−∞ < x, y <∞, −H ≤ z ≤ 0), ∆3 ≡ ∆2 + ∂2/∂z2, ∆2 ≡ ∂2/∂x2 + ∂2/∂y2 , (1)

Dn∆2
2w + ρhnU

2∂2w/∂y2 + gρ0w − ρ0U∂ϕ/∂y = −H(x)P (x, y) (z = 0), (n = 1, 2), (2)

∂ϕ/∂z = −U∂w/∂y (z = 0), ∂ϕ/∂z = 0 (z = −H). (3)

Here Dn = Eh3
n/[12(1 − ν2)]; E, ν, ρ are Young’s modulus, Poisson’s ratio and the density of ice

sheets, respectively; ρ0 is the fluid density; g is the acceleration due to gravity; H(x) is the Heaviside
function; n = 1 at x < 0 and n = 2 at x > 0. The boundary conditions for plates with free edges have
the form
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∂x2
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w(±0, y) = 0,
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w(±0, y) = 0. (4)



For wave motion the decaying conditions should be satisfied far from the pressure region.
For h1 = 0, we have the configuration (i) in which the fluid is bounded by the free surface at x < 0.

For configuration (iii), the fluid is restricted at the left by the rigid wall: ∂ϕ/∂x = 0 at x = 0. The
edge of ice sheet can be free or frozen to the fixed vertical structure, then w = ∂w/∂x = 0 (x = 0).

We restrict our consideration to the constant pressure distribution in the rectangular planform:

P (x, y) =

{

P0 = const (|x− x0| ≤ a, |y| ≤ b, x0 > a),
0 otherwise.

(5)

The forces Fx (side force) and Fy (wave resistance) acting on ACV and its non-dimensional values Ax,
Ay are determined by formulae

(Fx, Fy) = −P0

∫ b

−b

∫ x0+a

x0−a

(∂w

∂x
,
∂w
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)

dxdy, (Ax, Ay) = − gρ0

2aP 2
0

(Fx, Fy). (6)

3 METHOD OF SOLUTION

We describe briefly the solution of problem (1)∼(4) by the Wiener-Hopf technique. The dimensionless
variables and parameters are introduced

(x′, y′, z′, a′, b′, x′0) =
1

H
(x, y, z, a, b, x0), βn =

Dn

ρ0gH4
, F =

U√
gH

, σn =
ρhn

ρ0H
, P ′

0 =
P0

ρ0gH
.

Below, the primes are omitted. We will seek the velocity potential and the displacement in the form
ϕ = UHφ(x, y, z), w = HW (x, y).

We use the Fourier transform to the variables x and y in the form

Φ−(α, s, z) =

∫ ∞

−∞

e−isydy

∫ 0

−∞

φ(x, y, z)eiαxdx, Φ+(α, s, z) =

∫ ∞

−∞

e−isydy

∫ ∞

0
φ(x, y, z)eiαxdx.

From the Laplace equation (1) and no-flux bottom condition (3), we have

Φ(α, s, z) = Φ− + Φ+ = C(α, s)Z(α, s, z), Z = cosh[(z + 1)
√

α2 + s2]/ cosh
√

α2 + s2, (7)

where C(α, s) is unknown function. We introduce the functions G±
n (α, s) in the following manner:
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The functions with the superscripts +/− are analytical on α in the upper/lower half-plane, respectively.
From boundary conditions (2), we have

G−
1 (α, s) ≡ 0, G+

2 (α, s) = isQ(α, s), Q(α, s) = 4P0e
iαx0 sin(αa) sin(sb)/(αs), (8)

where Q(α, s) is the Fourier-transform of the function P (x, y) in (5). Using (7), we can write

G1(α, s) = G−
1 +G+

1 = C(α, s)K1(α, s), G2(α, s) = G−
2 +G+

2 = C(α, s)K2(α, s), (9)

where Kn(α, s) (n = 1, 2) are the dispersion functions for the flexural-gravity waves in a moving
coordinate system: Kn(α, s) = [βn(α2 + s2)2 + 1 − σnF

2s2]
√
α2 + s2 tanh

√
α2 + s2 − F 2s2.

It is known that the dispersion relation for the flexural-gravity waves K1(γ) ≡ (β1γ
4 + 1 −

σ1F
2s2)γ tanh γ − F 2s2 = 0 has two real roots ±γ0, four complex roots ±γ−1, ±γ−2, γ−2 = −γ̄−1

(the bar denotes complex conjugation), and the countable set of imaginary roots ±γm, m = 1, 2, ....
Similarly, the second relation K2(µ) ≡ (β2µ

4 +1−σ2F
2s2)µ tanhµ−F 2s2 = 0 has the roots µm (m =



−2,−1, 0, ...). Then the roots of the dispersion relations Kn(α, s) = 0 are χm =
√

γ2
m − s2 (n = 1)

and αm =
√

µ2
m − s2 (n = 2). We will take these values in the upper half-plane.

From relations (8) and (9), we obtain G−
2 (α, s) + isQ(α, s) = G+

1 (α, s)K(α, s), K(α, s) =
K2(α, s)/K1(α, s). In accordance with the Wiener-Hopf technique, we factorize the function K(α, s)

K(α, s) = K−(α, s)K+(α, s), K±(α, s) =
∞
∏

j=−2

(α± αj)γj/[µj(α± χj)],

where K± are analytical in the upper/lower parts of the complex plane α, respectively. After some
algebra we obtain the equation

G−
2 (α, s)/K−(α, s) + 2P0 sin(sb)L−(α, s) = G+

1 (α, s)K+(α, s) − 2P0 sin(sb)L+(α, s), (10)

L±(α, s) = ± 1

2πi
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ψ(ζ)dζ

K−(ζ, s)(ζ − α)
, ψ(α) =

1

α
[eiα(x0+a) − eiα(x0−a)].

The functions on the left-hand and right-hand sides of Eq. (10) are analytical in the lower and upper
parts of the complex plane α, respectively. Then we have analytical function over the entire complex
plane α. By Liouville’s theorem, this function is a polynomial. The degree of the polynomial is
determined by the behavior of this function as |α| → ∞ and is equal to three, i.e.

G+
1 (α, s)K+(α, s) − 2P0 sin(sb)L+(α, s) = 2P0 sin(sb)

3
∑

k=0

ak(s)α
k,

where ak(s) are unknown functions which are defined from edge conditions (4).
The deflection of the plates is determined by performing inverse Fourier transform:

at x < 0
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ds, (11)

at x > 0
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π
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s
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µje
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,

where the prime denotes the partial derivative of a function with respect to its first variable. The
integrand functions in (11), (12) decay exponentially as |s| → ∞.

For each elastic plate there is a minimum phase velocity of the flexural-gravity waves c∗n (n = 1, 2)
(see, e.g. Squire et al., 1996). If U < c∗2, then µ0(s) < |s| for any values of the parameter s, and
the real roots of dispersion relation K2(α, s) = 0 are absent. If U < c∗1, then this is true for another
plate, and the real roots of dispersion relation K1(α, s) = 0 are absent. At U < min{c∗1, c∗2}, wave
motions in the plates are not excited and only local disturbances are observed in the region of load.
If c∗2 < U <

√
gH, then there are two values s−2 and s+2 such that µ0(s) > |s| at s−2 < |s| < s+2 . A

similar statement holds for another plate: at c∗1 < U <
√
gH, then there are two values s−1 and s+1

such that γ0(s) > |s| at s−1 < |s| < s+1 . With increasing speed of the load, the value s−n decreases, and
the value s+n (n = 1, 2) increases. At a speed greater than the long-wave limit, i.e. U ≥ √

gH, we
have s−1 = s−2 = 0.

For the identical plates (h1 = h2) with a crack, the solution can be obtained in an explicit form. In
this case K1(α, s) = K2(α, s), K(α, s) ≡ 1, K±(α, s) ≡ 1, L−(α, s) = 0. The coefficients ak(s) (k =
0, 1, 2, 3) are equal to

a0(s) = νs2a2(s), a1(s) = (2 − ν)s2a3(s),
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.

At U > c∗, there are two values s−∗ and s+∗ for which Ω(s) = 0. The values s−∗ and s+∗ are extremely
close to the values s− and s+ (s−∗ < s−, s+∗ > s+). The residues of the integrand at these points
determine the edge waveguide modes with wave numbers s−∗ and s+∗ . The mode with s+∗ propagates
in front of the load, but the mode with s−∗ propagates behind the load. For configuration (iii), the
solution is also constructed in explicit form using the reflection method. The most large amplitude of
the edge mode is for configuration (iii) with free edge.

Figure. 1.

Non-dimensional values of wave forces acting on moving vehicle are presented in Fig. 1 as functions
of the load speed. The following input data are used: E = 5 GPa, ρ = 900 kg/m3, ν = 1/3, h2 =
2 m, ρ0 = 103 kg/m3, a = 10 m, b = 20 m, x0 = 50 m, H = 350 m, P0 = 103 Pa. The minimum
phase velocity of the flexural-gravity waves for these parameters is equal to 20.14 m/s. Fig. 1(a,b)
shows the values Ax and Ay in (6), respectively. Curves 1 correspond to configuration (i). Curves
2-4 show the results for configuration (ii) at h1 = 1, 2, 3 m, respectively. Curves 5,6 correspond to
configuration (iii) with free and clamped edge, respectively. The wave resistance for infinite ice sheet
is given by curve 7, the side force in this case is identically equal to zero. More detailed numerical
results will be presented at the Workshop.
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