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Summary

A wave energy conversion (WEC) model is developed for a single-degree of freedom device oscillating
in a stochastic sea state. A state-space model is derived for the causal impulse response function of the
radiation problem and its non-causal counterpart in the diffraction problem. The force of the power
takeoff mechanism (PTO) is regulated by a feedforward controller that requires the forecast of the wave
exciting force which may be estimated online by onboard sensors. The controller objective function aims
to maximize the wave energy absorbed subject to constraints specific to the PTO. Accurate exciting force
forecasts are generated by a machine learning algorithm which may also be used to learn WEC
hydrodynamic nonlinearities. The performance of the model is illustrated for a heaving vertical circular
cylinder.

WEC Equation of Motion

Assuming linear potential flow, the equation of motion of a single degree of freedom WEC in heave in
the time domain is governed by the Cummins equation:
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Where, m is the mass of the structure, A, is the added mass at infinite frequency, K, is the impulse
response function of the wave radiation force, C is the restoring coefficient, f, is the incident wave

excitation force and f,, is the PTO machinery force (Falnes, (2002)).

The radiation and diffraction impulse response functions are obtained from the Fourier transform of the
frequency domain transfer functions computed by WAMIT™. For the purpose of implementing the
control algorithm, the impulse response functions are cast in state-space form. Nonlinear free surface and
viscous effects may affect the WEC hydrodynamic loads for large amplitude motions and may be learned
online by a machine learning algorithm analogous to that used to forecast the exciting force.

The PTO force f,,(¢) is a signal regulated by the feedforward controller in order to maximize the wave

energy captured under constraints on the heave displacement, force, active and reactive power of the
PTO. The proper settings for these constraints are PTO specific and can be adjusted accordingly. The
PTO force is a function of the current values of the system states, which include the WEC kinematics, the
states of the radiation impulse response functions and the exciting force.

Because of the non-causality of the diffraction impulse response function, the ambient wave elevation or
the exciting force need to be forecasted over a sufficiently large time window into the future. These
forecasts require knowledge of either the ambient free-surface elevation which is often hard to measure or
of the exciting force which may be estimated by sensors on the WEC. The latter approach is adopted in
this note. Accurate forecasts of the exciting force are obtained by using an Artificial Intelligence Support
Vector Machine algorithm as summarized below (Sclavounos and Ma, (2018)).



State Space Model of Impulse Response Functions

The governing equation (1) includes a convolution integral J'i K, (t—7)¢(r)dr, which represents the

wave radiation force. Denoting the convolution term as F, it can be approximated by a state-space model
(Perez and Fossen, (2009)):

x,(1)=Ax.(1)+ B, (1)

) 2
F.(1)=C,x,(t)+D,{ (1)

Figure 1 shows the very good agreement of the original kernel function and its state-space approximation.
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Figure 1. Fitted radiation kernel function
The state-space model of the dynamical system (1) is cast in the standard form:
x=Ax+B (u+w)
y=Cix 3)
z=C,x

Where, x=[¢,.x. 1", u=f,. w=f,, y=¢, z=¢
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LS—-SVM Forecasts of the Exciting Force

The SVM regression uses a mapping into a high-dimensional feature space and its associated inner-
product positive definite Kernel to represent the exciting force signal, which is trained using algorithms
from optimization theory. LS-SVM is the least-squares version of the original SVM. It solves a set of
linear equations instead of a convex quadratic programming (QP) problem of the classical SVM.

Figure 2 shows the performance of the LS-SVM regression method in predicting the heave excitation
force which is simulated by convolving the impulse response function with the wave elevations measured
in a tank test. The forecast horizon is 5 seconds and the RMS (Root-Mean-Square) error of the forecasted
signal is 9.6% of (40p,, ). O, is the standard deviation of the exciting force. Using 40 as the non-

dimensionalization factor is analogous to using the significant wave height for the wave elevations.
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Figure 2. Comparison of the original and forecasted wave exciting force
Model Predictive Control

The objective is to maximize the energy E extracted by the PTO system over a predicted time horizon T, :

Vy T, .
E =j0hP(t)dt= on1 —fm @& (@)dt . Therefore, the optimization problem will be  formulated as:

T,
max E = min(—E) = min .[oh u(t)y(t)dt with constraints on both the heave motion and PTO machinery

force: | zI< Ciax sl 4 1< f, max - The minimization problem subject to an equality constraint (the system

dynamics (3)) and inequality constraints (the heave motion and machinery force constraints) forms a non-
convex QP problem. Discretizing the objective function with a time step Ar, and modifying the

N-1 N-1
discretized objective function from J, = Atz (upyy) to J= Atz (. yp + 71 Ay 1), Ay =y — 1y
k=0 k=0

leads to a constrained convex QP problem (Ma et. al., (2018)).
Wave Energy Conversion Results

The performance of the MPC is tested for a heaving cylinder which is neutrally buoyant with radius 5Sm
and draft 8m. The performance of the WEC is simulated under two different sea states (Hs=1.7m,
Tp=8.7s; Hs=4.5m, Tp=11.8s) with varying regularization factors r (le-5, le-4, le-3) to illustrate its
effect on the generated power and corresponding control force and heave motion. The optimization
horizon for the MPC is 5 seconds and the wave force is forecasted by the LS-SVM regression. Figure 3

shows the RAO of the heave motion and the two seastate spectra. The constraints &y, [, max are
specified by the PTO machinery. The statistical results are shown in Table 1. Figure 4 shows the time
records of the cumulative power for different r under the two seastates. Figure 5 shows time records of the
heave displacement, heave velocity, wave force, control force and instantaneous power under different
values for r. When r is small, the heave amplitude and PTO machinery force are bounded by the
constraints. The heave constraint is set to &, = Hand the force constraint f,, .. s set to a large value.

Table 1. Statistical results under different regularization factors r

Sea state 1 Sea state 1, Sea state 1, Sea state 2, Sea state 2, Sea state 2

Cases =le-5 r=le-4 r=1e-3 r=le-5 r=le-4 =le3
P (KW) 89.2 61.7 41.8 720 590 280
op(KW) 265.6 212.7 86.4 2030 1780 615
Oy, N) 4.94e5 3.5e5 1.6e5 1.94¢6 1.26e6 5.1e5
o, (m) 1.16 0.96 0.58 3.76 3.02 1.52
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Figure 3. Heave RAO and wave spectra
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Figure 4. Cumulative power: left (Hs=1.7m, Tp=8.7s), right (Hs=4.5m, Tp=11.8s)
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Figure 5. Time records of the WEC performance: left (Sea state2, r=1e-3); right (Sea state2, r=1e-5)
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