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Abstract 
Some offshore structures have a resonant response to short waves, which needs to be considered in combination 
with the main response to large survival waves. The behaviour of short waves in the presence of large long waves 
is however a longstanding problem area in marine hydrodynamics. Stokes’ expansion diverges and the empirical 
approximations such as “Wheeler stretching” have no theoretical foundation. This paper explores the problem 
with a fully-nonlinear numerical simulation, not of the usual boundary-element type, but with a simple numerical 
scheme based on Fourier series, which is implemented in MATHCAD. It is found that the second-order difference 
frequency wave, from Stokes’ expansion, is rapidly joined by other waves of intermediate wavelengths, travelling 
with various velocities. The behaviour is complicated, but does not appear to be chaotic. 
 
Background – practical importance of the issue, and its theoretical difficulty 
Traditionally, fixed offshore structures are designed so that their natural periods are sufficiently short (< 3s) that 
there is no dynamic response to the waves. Some recent structures, however, have natural periods sufficiently 
long (> 4s) that their dynamic response to waves is noticeable, and contributes to the 100-year extreme structural 
response. Calculating this extreme response is then a matter of combining the effect of large survival waves of 
long period (> 12s), with the effect of much shorter waves at the natural period. 
 
Here a well-known difficulty arises. If the long and short waves are simply superimposed according to the linear 
theory, the short wave “blows up” on the crest of the long one, because of its strong exponential depth dependence. 
A 3:1 ratio of wave period corresponds to a 9:1 ratio of wavelength, so if the exponential magnification of the 
long wave in its crest is 1.3, say, which is typical, then it is 1.39 = 10.6 in the short wave in the same crest. This is 
clearly physically implausible, and from a theoretical point of view means that the linearity assumption has broken 
down – when we calculate the second-order wave components (see below) they are larger than the first-order, so 
Stokes’ expansion is diverging. 
 
The traditional engineering assumption (“Wheeler stretching” [1]) is that the short wave is the same as it would 
be on its own in otherwise-still water, and is simply transported up to the crest of the long wave. This is however 
almost certainly a non-conservative assumption, because at sea all large waves are observed to have foam on their 
crests (“white horses”) which could be local breaking of shorter waves. Also, if the bandwidth of the waves is 
restricted to 2:1 period ratio, linear theory is observed in the laboratory [2] to give a good model of the wave 
kinematics, without any “Wheeler stretching”. 
 
This paper explores the behaviour of a short wave in the presence of large long wave of 10 times the wavelength 
(i.e. period ratio of √10 = 3.16:1), by fully-nonlinear numerical simulation. To avoid the complexities of local 
wave breaking, the steepness of short wave (but not the long wave) is made small. 
 
Numerical method 
A method for fully-nonlinear numerical simulation of water waves was first developed in 1976, by Longuet-
Higgins and Cokelet [3]. This boundary-element method has since been developed by several workers, e.g. [4], 
[5]. The late Prof. Peregrine’s program was successfully used by the author ten years ago, with his support, on a 
similar problem [6]. However, no supported version of these boundary-element codes is currently commercially 
available, to the author’s knowledge. 
 
This paper accordingly develops a new method, suitable for the present problem where the wave does not break, 
and our interest is in its frequency content. The fluid domain is periodic of length L, as with the boundary-element 
method, allowing us to expand the velocity potential ϕ as an N-term Fourier series: 
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which inherently satisfies Laplace’s equation. Here kn = 2πn/L are the wavenumbers of the Fourier components 
whose complex amplitudes Φn (t) are arbitrary functions of time, so that they can have any speed. The numerical 
method has been implemented in MATHCAD for maximum readability; the MATHCAD routine stores Φn(tj), 
d/dt{Φn(tj)} and d2/dt2{Φn(tj)} at the jth timetep as the N-vectors Φj , DΦj and DDΦj, respectively. The free surface 
elevation η is also described as an N-term Fourier series, which (since η is purely real) gives by FFT the elevation 
η and its slope ∂η/∂x at 2N points equally-spaced over L. Their values at the jth timestep are stored in the routine 
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as the 2N-vectors ψj and Sψj respectively. The routine calculates the values of all these vectors at the (j+1)th 
timestep as follows: 
 
                                                        Φj      DΦj     DDΦj     ψj     Sψj                                                                    
                                                                             
 
                                             From Φj calculate horizontal and vertical fluid 
                                        velocities u and v at each point on the free surface ψj 
 
 
                                   
                                     Calculate ∂η/∂t from the kinematically-exact formula: 
 
                Δt                                             ∂η/∂t = v – u.∂η/∂x 
 
                                          Apply over Δt to advance  ψj  to ψj+1 . Calculate 
                                                  Sψj+1 from Fourier components of ψj+1 

 
 
 
                                      Set Φj+1 = Φj + DΦj.Δt  and  DΦj+1 = DΦj + DDΦj.Δt   
                                    Use them to calculate pressure on ψj+1 (from [7] p.19 (5)) 
                                                     which will not be exactly zero. 
               e                   Adjust DΦj+1 until it is zero within a specified tolerance 
                                    e, using successive corrections derived by assuming the 
                                        pressure error is felt at z=0 rather than on the free 
                                    surface (so that the required correction to DΦj+1 can be 
                                       obtained by FFT). Set DDΦj+1 = (DΦj+1 - DΦj)/Δt   
 
 
                                                 Φj+1      DΦj+1     DDΦj+1     ψj+1     Sψj+1 
 
                                                           Figure 1. Numerical scheme 
 
Initial runs showed that the scheme was susceptible to a high-frequency “zig-zag” instability, just like the 
instability seen in boundary element computations [4], [5]. There it is removed by introducing some smoothing 
of the free surface, the same effect is achieved here by setting the Fourier components Φ of the potential (but not 
those of the surface elevation η) to zero above some cut-off wavenumber, above which the waves were apparently 
all numerical instabilities, in that their amplitude was controlled by the computation parameters Δt and e.  
 
Parameters chosen for computation 
Length of computational domain         256 m 
Length of long wave                            256 m (i.e. k = 2π/256 = 0.0245 m-1, 12.8 s linear-theory period) 
Nominal amplitude of long wave         5 m (i.e. 10 m nominal height) 
Length of short wave                            25.6 m (i.e. k = 2π/25.6 = 0.245 m-1, 4.05 s linear-theory period) 
Nominal amplitude of short wave        5 cm (i.e. 10 cm nominal height) 
Number of computational points          256 (i.e. 1 m spacing) 
Number of wavenumbers                     128 (i.e. 2π/256 = 0.0245 m-1 spacing) 
Cut-off wavenumber                             20 times lowest  
Timestep  Δt                                          0.5 milliseconds 
Pressure tolerance e on free surface     1 mm head (i.e. 0.01 kPa) 
 
Results 
Simulations were started using the velocity potential from 2nd order wave theory, which features a 2nd order 
potential at the difference-wavnumber, see e.g. [6] eqn. 4.2. The simulation was started from the zero-pressure 
surface, automatically including all the 2nd order components of surface elevation. As an additional refinement, 
the 3rd order correction ([7] p.417 (6)) to the speed of the long wave was included in these initial conditions. 
Results of a 100s run are shown in Figure 2 below. 
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Figure 2. Snapshots over computational domain of surface elevation η (m, top) slope dη/dx (m/m middle) 
& curvature d2η/dx2 (m-1, bottom), after 0s ( ), 20s ( ), 40s ( ), 60s ( ), 80s ( ), & 100s ( ) 

 
The initial shape of the wave shows much less variation in the height of the short wave, between the crest and 
trough of the long wave, than suggested by linear theory, according to which the amplitude of the short wave 
should vary by a factor e0.245×10 = 11.6. This shows the importance of the 2nd order potential at the difference-
wavenumber, which is in phase with the linear short-wave potential in the long-wave trough, and in anti-phase in 
the long-wave crest. The later development of the short wave largely preserves this feature. However, many other 
Fourier components are seen in the surface elevation, as may be seen in Figure 3 below. 
 

                 
Figure 3. Amplitude (m, left) and speed (ms-1, right) of Fourier components of surface elevation η, as a 
function of wavenumber (25 components shown, some off-scale). Times shown by colour code of Fig. 2. 
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The sum and double-wavenumber components are evident, as expected from the well-known 2nd order formulae 
(e.g. [6] eqn 4.3), but other components are also noticeable, particularly in between the two original wavenumbers. 
The speeds of the components are also given in Figure 3, and largely follow the 2nd order formulae for the relevant 
wavenumbers – but again other components, of different speeds, are noticeable, as seen in experiments on focused 
waves ([6], fig. 4). 
 
More fundamental, and less complicated, are the Fourier components of the potential (it is convenient to consider 
DΦ rather than Φ, since ∂ϕ/∂t is directly related to pressure), shown in Figure 4 below. 
 

                 
Figure 4. Amplitude (m2s-2, left) and speed (ms-1, right) of Fourier components DΦ, as a function of 

wavenumber (first 20 components shown, 1st off-scale). Times shown by colour code of Fig. 2. 
 
Particularly interesting is the variation over time of the component amplitudes, shown in Figure 5 below. This is 
very complicated (the slight upwards drift reduces with Δt), but does not appear to be chaotic – it is unchanged if 
a trough, rather than a crest, of the short wave is initially aligned with the crest of the long wave. 
 

 
Figure 5. Variation of amplitudes of first 10 Fourier components in DΦ, over 100s. 

     = 0th, =1st(×0.01), = 2nd, = 3rd, =4th, =5th, =6th, =7th, =8th, =9th, =10th 
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