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1 Introduction

The term metamaterial is used to describe a medium which exhibits properties not normally associated
with naturally-occurring materials. Typically, metamaterials achieve this by possessing a microstructure
whose lengthscale is significantly smaller than the characteristic lengthscale over which the underlying
field varies. The effect of the microscale on the macroscale gives rise to an effective medium whose proper-
ties are normally established by homogenisation methods or by direct numerical simulation. Metamaterial
science emerged in tandem with discoveries made primarily in the physical disciplines of optics and elec-
tromagnetics. Most notably these include negative refraction, perfect lensing and invisibility cloaking.
In each case the properties required of the metamaterial are prescribed by a specific design outcome as
exemplified by so-called transformation media methods used for designing cloaks. The microstructure
used in most metamaterials is built upon two- and three-dimensional periodic lattices of scatterers or
resonators (e.g. Smith et al (2012)).

In water waves, a metamaterial can be formed by any medium with structural elements smaller than
the anticipated range of wavelengths. In this paper we consider a particular embodiment of a water wave
metamaterial in which the medium is formed by closely-spaced arrays of thin vertical plates extending
through the depth.

We demonstrate the unusual properties of this simple but novel metamaterial using three examples
each involving the scattering of plane waves on a fluid of constant depth. The approach taken to the first
problem is similar to work by Kaji & Okazaki (1970) who considered sound propagation in the presence
of mean flow through a linear array of turbine blades.

2 Scattering by a plate-array metamaterial of finite width

In this problem the metamaterial medium occupies |y| < b, −∞ < x < ∞ and is comprised of a periodic
array of thin plates rotated through a clockwise angle δ and separated by a perpendicular distance d from
neighbouring plates in the array (plan view in Fig. 1(a)). The plates are of length 2L = 2b cos δ. They
extend uniformly through the fluid depth, h, allowing us to remove the depth dependence, z along with a
harmonic time dependence of angular frequency ω from the velocity potential ℜ{φ(x, y) cosh k(z+h)e−iωt}
where k tanh kh = ω2/g. The wavefunction φ(x, y) satisfies

(∇2 + k2)φ = 0, in the fluid. (1)

A plane wave is incident from y < −b and propagates in the direction θ0 measured clockwise from
the positive y-axis and so

φ(x, y) ∼

{

eiα0xeiβ0y +Reiα0xe−iβ0y, as y → −∞
T eiα0xeiβ0y, as y → ∞

(2)

where α0 = k sin θ0, β0 = k cos θ0 and R and T are reflection and transmission coefficients (assuming kd
is small enough that no further diffraction modes exist). Neumann conditions apply on each side of the
plates and φ is inverse square-root singular at the ends of the plates.
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Figure 1: (a) A parallel-plate array metamaterial of finite width and (b) a circular parallel-plate array
metamaterial cylinder.

Solutions to the full microstructured problem described above can be sought using Bloch-Floquet
theory to relate φ(x, y) everywhere to the value it takes in a fundamental cell of the array of width d.
One can then derive an integral equation over the plate within that cell whose solution can be numerically
calculated. Evidently this is a complicated approach.

Alternatively we can take advantage of the underlying assumption that the separation between plates
is small both with respect to the wavelength and the plate length (kd ≪ 1, d/L ≪ 1) and replace the
plate/fluid microstructure in |y| < b with an effective medium in which the potential φ(x, y) ≈ Φ(X,Y )
with y = Y cos δ, x = Y sin δ +X satisfies

(

∂2

∂Y 2
+ k2

)

Φ = 0, |Y | < L, −∞ < X < ∞. (3)

and whose general solution is
Φ(X,Y ) = c(X)eikY + d(X)e−ikY . (4)

We also note that the representation (2) – previously asymptotic – is now exact for y < −b and y > b.
Continuity of the field across the upper and lower boundaries requires

φ(x,−b−) = Φ(x− L sin δ,−L+), and φ(x, b+) = Φ(x+ L sin δ, L−) (5)

and it follows that c(X) = Ceiα0X and d(X) = Deiα0X , for C,D ∈ C. A second matching condition
comes from balancing fluxes across small triangles the edge of the microstructure which leads to

φy(x,−b−) = cos δΦY (x− L sin δ,−L+), and φy(x, b
+) = cos δΦY (x+ L sin δ, L−). (6)

The four matching conditions (5), (6) allow us to find C, D and

R =
(cos2 θ0 − cos2 δ) sin(2kL)e−2ikL cos θ0 cos δ

(cos2 θ0 + cos2 δ) sin(2kL) + 2i cos(2kL) cos θ0 cos δ
(7)

and

T =
2i cos θ0 cos δe

−2ikL cos(θ0−δ)

(cos2 θ0 + cos2 δ) sin(2kL) + 2i cos(2kL) cos θ0 cos δ
. (8)

Several things are worthy of note. First, the conservation of energy relation, |R|2 + |T |2 = 1, is easily
verified. Writing R = R(θ0, δ; kL), T = T (θ0, δ; kL) helps list further properties as:

(i) (symmetry) R(θ0, δ; kL) = R(−θ0, δ; kL), and R(θ0, δ; kL) = R(θ0,−δ; kL) (9)

with the same relations applying to |T |;



(ii) (angular transparency) R(θ0,±θ0, kL) = 0,

{

T (θ0, θ0, kL) = 1,
|T (θ0,−θ0, kL)| = 1

(10)

and (wavenumber transparency) R(θ0, δ, nπ/2) = 0 with |T (θ0, δ, nπ/2| = 1;

(iii) (reciprocity) R(θ0, δ, kL) = −R(δ, θ0, kL), and T (θ0, δ, kL) = T (δ, θ0, kL); (11)

(iv) (periodicity) |R(θ0, θ0, kL+ nπ/2)| = |R(θ0, θ0, kL)| and |R(θ0, θ0, π/2− kL)| = |R(θ0, θ0, kL)|
(12)

with the same relations applying to |T |.
Amongst the results above, most remarkable is the first result in (ii), that of total transmission for

θ0 = −δ when the array is angled backwards against the incident wave direction a property which is
wavenumber independent. This property is shared by the solution to the exact microstructured problem.
Comparisons have been made between the approximate solution presented here based on a homogenised
governing equation for the metamaterial plate array and the exact treatment of the microstructured
problem and show excellent agreement provided d/L is small enough (roughly less than 0.1).

An illustration of the transparency property is presented in Fig. 2(a,b) which shows the instantaneous
wave field for a wave with k = 1, 2 propagating at θ0 = 45◦ across an array of width b = 2 tilted at
δ = −45◦. An illustration of wavenumber transparency is shown in Fig. 2(c) where a Gaussian beam
(a weighted integral over a range of values of θ0) is incident on the same array for kL = 18π. Thus the
array acts as a negative refraction medium and a ‘metamaterial waveshifter’ – e.g. Smith et al. (2012).
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Figure 2: The instantaneous wave field for incident waves propagating at θ0 = 45◦ into an array of plates
tilted at δ = −45◦ for k = 1 (a) and k = 2 (b). In (c) a Gaussian beam is incident at kL/2π = 9.

3 Scattering by a circular metamaterial cylinder

A parallel array of closely-spaced vertical plates extending uniformly throughout the depth are aligned
with the y-axis and fill a circular cylinder of radius a centred at the origin. Plane waves propagating at
an angle θ0 w.r.t. to the x-axis are incident on the cylindrical structure (see Fig. 1(b).)

In r > a the general solution satisfying the wave equation (1) is

φ(r, θ) =

∞
∑

n=−∞

in(Jn(kr)e
−inθ0 + anHn(kr))e

inθ (13)

where an are scattering coefficients, to be determined.
Inside the cylinder the array of plates act as a metamaterial meaning the field satisfies (see (3))

Φyy + k2Φ = 0, r < a (14)

and solutions are
Φ(x, y) = c(x)eiky + d(x)e−iky, r < a. (15)



We expand the two unknown functions of x in terms of Chebychev polynomials and unknown expansion
coefficients cn, dn

c(x) =
∞
∑

n=0

cnTn(x/a), d(x) =
∞
∑

n=0

dnTn(x/a) (16)

a choice which allows simplification of subsequent algebra. For example, we find

Φ(a cos θ, a sin θ) =
1

2

∞
∑

n=0

∞
∑

p=−∞

(cn + (−1)p+ndn)(Jp+n(ka) + Jp−n(ka))e
ipθ (17)

which is matched to φ(a, θ) from (13). The matching of fluxes across the boundary of the cylinder
to the region between the plates gives the condition φr(a, θ) = sin θ Φy(a cos θ, a sin θ). Together the
two matching conditions give rise to a pair of infinite systems of equations for for the coefficients an
(−∞ < n < ∞) and cn, dn (0 ≤ n < ∞), solved numerically by truncation to finite systems of equations.

When θ0 = ±π/2 the solution reduces to an = 0 and the waves pass through the cylinder with no
scattering. For other values of θ0 the metamaterial cylinder interacts with incident waves in a non-trivial
way. Fig. 3 illustrates typical results and shows the instantaneous free surface for a cylinder with a = 1
and θ0 = 45◦ and k = 1, k = 1.3, k = 1.6. The color scales differ in each plot and the maximum height of
the wave field varies from 2.5 to 25 across the three plots. The narrow open-ended channels between the
plates act as one-dimensional resonators and their effect on the wave field increases until ka = π/2 when
the diameter of the cylinder matches a half-wavelength of the incident wave and the central channel of
the metamaterial cylinder is resonant. Once ka exceeds π/2 two shorter chords of cylinder are excited
to resonance by incident waves as indicated in Fig. 3(c) by the two thin high-amplitude lines across the
cylinder. Further results will be presented and discussed at the Workshop.
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Figure 3: Instantaneous wave field due to incident wave propagating with θ0 = 45◦ on a cylinder with
a = 1 with: (a) k = 1; (b) k = 1.3; (c) k = 1.6.

4 Reflection of water waves by a metamaterial wall

In a third example, results will also be shown for waves interacting with a wall comprised of a staggered
plate array. Here, it will be shown that plane waves of incident angle θ0 can be totally reflected in the
same direction as the incoming wave.
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