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Introduction

The interest for wave/porous body interaction has been recently increased due the expansion of aquaculture
and fish farms industry. In addition, structures where porous surface represent an important part (such as
floating breakwater [6], Tuned Liquid Damper (TLD) [3],...) are known for their capability to reduce wave
loads through energy dissipation. Therefore, it may consists one of the practical solutions to reduce motion
response or attenuate waves in some coastal engineering applications. The porosity effect is usually taken
into account by introducing a body boundary condition (linear [1] or quadratic [3]) that links pressure to
velocity at both sides of the porous boundary.

The main purpose of the present work is to provide reference results for the validation of numerical codes.
A simplified configuration has been considered here, which consists of a porous truncated vertical circular
cylinder. The (BVP) has been formulated for the inner and the outer domains within the classical potential
flow assumptions. A linear porosity model has been considered for the body boundary condition [2][5][7].
The diffraction-radiation problem is then solved with an appropriate eigenfunction expansion.
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Figure 1: porous circular cylinder, configuration sketch

Mathematical formulation

A cylindrical coordinate system (er, eθ, ez) is adopted here with the z-axis pointing upward and z � 0 the
undisturbed free surface. g is the gravity, h the water depth, ρ the fluid density, ω the wave frequency and
ν � ω2

{g the infinite depth wave number. The cylinder is supposed to be rigid with only three independent
radiation problems to be considered: surge j � 1, heave j � 3 and pitch j � 5 calculated with respect to
the centre of waterplane. a stands for the cylinder radius and d its draft. The first order total displacement
HpR, ωq can be written as:

HpR, ωq �
¸

j�1,3,5

ξjpωqhj(R) (1)

Where R � pr, θ, zq the point position at rest, hj the jth modal displacement vector and ξjpωq its modal
amplitude. As the total displacement, the total fluid potential ΦpR, tq � ℜ

�

φpR, ωqe�iωt
�

can be expressed
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in frequency domain as:
φ � φI � φD � iω

¸

j�1,3,5

ξjφj (2)

φI is the incident potential, φD the diffraction potential and φj the radiation potential associated to the jth

mode. The diffraction-radiation potential φD{j should satisfy the Laplace equation in the fluid domain, the
free-surface boundary condition, the seabed boundary condition and the Sommerfeld condition at the far
field:
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(3)

Where the superscript out (respectively in) is used for the outer (respectively inner) cylinder region. Con-
cerning the body boundary condition, we consider the cylinder body to be infinitely thin with very fine and
numerous pores. Therefore, Darcy’s law can be applied. The latter implies that the normal relative velocity
is continuous and linearly proportional to the pressure drop through the porous body surface [1]:

Bφout
D{j

Bn
�

Bφin
D{j

Bn
� v.n� iσ

�

φin
D{j � φout

D{j

	

(4)

n is the body normal oriented towards the external fluid region, v the body velocity and σ the porosity
parameter. The body is impermeable for σ � 0 and completely transparent when σ Ñ 8. In our case, σb

refers to the cylinder bottom porosity coefficient and σl to the cylinder sidewall porosity coefficient. Finally,

v.n � �
BφI

Bn
for diffraction and v.n � hj.n for radiation.

Eigenfunction Expansion

The fluid domain is divided into 2 region: region 1 (r ¥ a) denoted by superscript p1q and region 2 (r ¤ a)
denoted by superscript p2q. For region 2, the superscript p2�q (respectively p2�q) indicates that the potential
is valid in the upper part z ¥ �d (respectively lower part z ¤ �d). The first order incident potential is given
by:

φI �
�ig

ω

�8

¸

m�0

ǫmimJmpk0rqf0pzq cospmθq (5)

With ǫ0 � 1 and ǫm � 2 for m ¡ 0. Jm is the Bessel function of the first kind. The diffraction-radiation
potential satisfying equation (3) in region 1 can be written as:

φ
p1q

D{j
�

�8

¸

m�0

�

a0m

Hmpk0rq

Hmpk0aq

f0pzq
?

F0

�

�8

¸

n�1

anm

Kmpknrq

Kmpknaq

fnpzq
?

Fn

�

cospmθq (6)

Here Hm is the Hankel function of the first kind and Km the modified Bessel function the second kind. The
vertical basis function fnpzq, which is orthogonal, is defined by:

f0pzq �
coshpk0pz � hqq

coshpk0hq
, fnpzq �

cospknpz � hqq

cospknhq
(7)

Where the wave numbers satisfy ν � k0 tanhpk0hq � �kn tanpknhq and Fn �

³0

�h
fnpzq

2dz. For r ¤ a, the

potential φ
p2q

D{j
is decomposed into two problems: φ

p2q

D{j
� φ

p2P q

D{j
� φ

p2Hq

D{j
, with φ

p2P q

D{j
the particular solution

satisfying (3) and the body boundary condition (4) at the cylinder bottom. Consequently, φ
p2Hq

D{j
should

verify (3) and the homogeneous body boundary condition (4) at the cylinder bottom:

Bφ
p2H�q

D{j

Bz
�

Bφ
p2H�q

D{j

Bz
� iσb

�

φ
p2H�q

D{j
� φ

p2H�q

D{j

	

(8)



Following [2], φ
p2Hq

D{j
is expressed as:

φ
p2Hq

D{j
�

�8

¸

m�0

�

�8

¸

n�1

bnm

Jmpµnrq

Jmpµnaq

gnpzq
?

Gn

�

cospmθq (9)

The vertical basis function gnpzq, also orthogonal, is given by:

gnpzq �

"

sinhpµnph� dqq pµn coshpµnzq � ν sinhpµnzqq �d ¤ z ¤ 0
pν coshpµndq � µn sinhpµndqq coshpµnpz � hqq �h ¤ z ¤ �d

(10)

And Gn �

³

0

�h
gnpzq

2dz similar to Fn for region 1. The velocity continuity at the cylinder bottom is satisfied
thanks to equation (10) whereas the pressure drop condition (8) yields to the following dispersion relation
[2] [7]:

µn sinhpµnph� dqq pν coshpµndq � µn sinhpµndqq � iσb pν coshpµnhq � µn sinhpµnhqq (11)

This dispersion equation has an infinite number of complex roots which are not real or pure imaginary when
σb � 0. In this case, an iterative scheme was used to evaluate µn numerically as suggested by Bao [7].

The particular solution φ
p2P q

D{j
depend on the problem to be solved. It can be easily found: φ

p2P q

D � �φI

for diffraction, φ
p2P q
1

� 0 for surge and φ
p2P q
3

�

i

σb

Hp�z � dq for heave, H being the Heaviside function.

Concerning pitch, the pressure drop condition takes the following form:

Bφ
p2P q
5

Bz
� �r cospθq � iσb

�

φ
p2P�q
5

� φ
p2P�q
5

	

(12)

First, the radial coordinate r is expanded using Fourier-Bessel series:

r �

�8

¸

j�1

αj

J1pκjrq

J1pκjaq
, αj �

2a

pκjaq2 � 1
(13)

κj is the jth root of
BJ1parq

Br
. Using separation of variables, φ

p2P q

5
is determined in a similar fashion:

φ
p2P q
5

�

�8

¸

j�1

cj

J1pκjrq

J1pκjaq
gP

j pzq cospθq (14)

With:

cj � �
αj

κj � iσb∆j

, ∆j � cothpκjph� dqq �
κj � ν tanhpκjdq

ν � κj tanhpκjdq
(15)

The vertical basis function gP
j pzq has the same expression, up to a constant multiplier, as gnpzq used for the

homogeneous solution:

gP�
j pzq �

κj coshpκjzq � ν sinhpκjzq

ν coshpκjdq � κj sinhpκjdq
, gP�

j pzq �
coshpκjpz � hqq

sinhpκjph� dqq
(16)

Matching conditions

The remaining boundary conditions are the velocity continuity at pr � a, z ¤ 0q, the pressure drop at the
cylinder wall pr � a,�d ¤ z ¤ 0q and the potential continuity across the lower domain pr � a,�h ¤ z ¤ �dq.
Those conditions are written as:

Bφ
p1q

D{j

Br
�

Bφ
p2q

D{j

Br
r � a � h ¤ z ¤ �d (17)
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φ
p1q

D{j
� φ

p2q

D{j
r � a �h ¤ z ¤ �d

Bφ
p2q

D{j

Br
� v.er � iσl

�

φ
p2q

D{j
� φ

p1q

D{j

	

r � a �d ¤ z ¤ 0

(18)

Equations (17) and (18) are projected over fnpzq and gnpzq to obtain the linear system of the unknown
coefficients anm and bnm (similar to [4]):

» 0

�h

Bφ
p1q

D{j

Br

fnpzq
?

Fn

dz �

» 0

�h

Bφ
p2Hq

D{j

Br

fnpzq
?

Fn

dz �

» 0

�h

Bφ
p2P q

D{j

Br

fnpzq
?

Fn

dz (19)



» 0

�h

φ
p2Hq

D{j

gnpzq
?

Gn

dz �
i

σl

» 0

�d

Bφ
p2Hq

D{j

Br

gnpzq
?

Gn

dz �

» 0

�h

φ
p1q

D{j

gnpzq
?

Gn

dz �

�

» 0

�h

φ
p2P q

D{j

gnpzq
?

Gn

dz �
i

σl

» 0

�d

Bφ
p2P q

D{j

Br

gnpzq
?

Gn

dz �
i

σl

» 0

�d

pv.erq
gnpzq
?

Gn

dz

(20)

The linear system is solved for each Fourier mode m for diffraction, only m � 1 for surge-pitch and m � 0
for heave. Once the potential found, the hydrodynamic forces are calculated by integrating the pressure
difference between the two cylinder sides:

F DI
j � iωρ

¼

pSq

pφin
D � φout

D qhj.ndS , ω2Aij � iωBij � ρω2

¼

pSq

pφin
i � φout

i qhj.ndS (21)

Preliminary results and discussion

The obtained solution is compared to available published results for validation. Figure (2) compares hori-
zontal exciting forces on a truncated cylinder with an impermeble bottom [5]. Good agreement is observed
with the reference results. On the other hand, figure (3) shows vertical exciting forces for the case where
both cylinder bottom and sidewall have the same porosity coefficient σb � σl � σ. b is the nondimensional
porosity parameter b � 2πσ{k0 following Chwang definition [2]. As expected, the hydrodynamics forces are
decreasing with the porosity. More detailed results will be presented at the workshop.

0.5 1 1.5 2 2.5
0

1

2

3

4

5

k0a

F
D

I
1

{

ρ
g
a

2

b
l
� 0

b
l
� 9

b
l
� 19.5

b
l
� 41

b
l
� 85

Figure 2: Horizontal force on a porous cylinder, bl �

2πσl{k, bb � 0, a{d � 0.5 and a{h � 0.03, semi-
analytical solution in solid line vs. Zhao [5] in markers
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Figure 3: Vertical force on a porous cylinder for dif-
ferent porosity values, bl � 2πσl{k0, bb � 2πσb{k0,
b � bb � bl, a{d � 0.5 and a{h � 0.1
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