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Highlight

The classical boundary-integral formulation of potential flow around a ship that travels at a constant
speed in regular waves is reconsidered, and a modified formulation that is significantly better suited for
accurate numerical evaluation than the classical formulation is given. In the special case of a ship that
travels in calm water, the modified boundary-integral formulation obtained here provides an interesting
alternative to the formulation of the Neumann-Michell theory given previously.

1. Introduction and basic notation
The flow around a ship hull, of length L, that travels along a straight path, at a constant speed V,

through time-harmonic (regular) ambient waves in water of large depth and lateral extent is considered
within the usual framework of linear potential flow theory. The flow is observed from a Galilean system
of coordinates that advances along the path of the ship at the ship speed V. The encounter frequency of
the ambient waves is denoted as ω. The X axis is chosen as the path of the ship and points toward the
ship bow. The Z axis is vertical and points upward, and the undisturbed free surface is taken as the
plane Z = 0. The mean wetted hull surface of the ship and its intersection with the undisturbed free-
surface plane Z = 0 are denoted as ΣH and Γ, which is oriented clockwise when viewed from above the
free-surface plane Z = 0, and ΣF denotes the undisturbed free surface outside the mean ship waterline
Γ. The nondimensional wave frequency f , the Froude number F and the related parameter τ are defined
as f ≡ ω

√
L/g , F ≡ V/

√
gL and τ ≡ fF ≡ V ω/g, where g denotes the acceleration of gravity.

The coordinates x ≡ (x, y, z ≤ 0) and x̃ ≡ (x̃, ỹ, z̃ ≤ 0), used further on, the time t, the flow
potential φ, velocity∇xφ, pressure p and surface flux q are nondimensional in terms of the length L and
the speed V of the ship, the gravitational acceleration g and the water density ρ, as follows:

x ≡ X/L , t ≡ T
√
g/L , φ ≡ Φ/(VL) , ∇xφ ≡ ∇XΦ/V , p ≡ P/(ρV 2) , q ≡ Q/V

The unit vector n ≡ n(x) ≡ (nx, ny, nz) normal to ΣH at a point x of ΣH points outside the ship (into

the water). The unit vector t ≡ (tx, ty, 0) = (ny,−nx, 0)/
√

1− (nz)2 tangent to the mean waterline Γ
at a point x = (x, y, 0) of Γ points toward the bow or the stern of the ship on the positive half 0 ≤ y or
the negative half y ≤ 0 of Γ.

2. Generic boundary-value problem

The flow potential φ̂(x, t) is expressed as φ̂(x, t) = Re φ(x) e−ifε t where fε ≡ f + iε and 0 < ε� 1.

This flow potential satisfies the initial conditions φ̂ = 0 and ∂φ̂/∂t = 0 for t = −∞. The spatial
component φ(x) vanishes as |x|→∞, and satisfies the Laplace equation

∇2φ ≡ (∂2
x + ∂2

y + ∂2
z )φ = 0 (1a)

in the undisturbed flow region D, the linearized boundary condition

[∂z + (ifε+F ∂x)2 ]φ = (iτ +F 2∂x)pF− qF ≡ πF (1b)

at the undisturbed free surface ΣF and the Neumann boundary condition

n ·∇φ ≡ ∂φ/∂n = q
H

where q
H
≡ n · vH (1c)

at the mean wetted hull surface ΣH of the ship.

In the generic boundary-value problem (1) considered here, the flux q
H

related to the normal com-
ponent of the velocity vH ≡ VH/V of the ship is presumed to be given at every point x of ΣH in
the boundary condition (1c). In the boundary condition (1b), pF(x, y) and qF(x, y) represent eventual
pressure and flux distributions at the undisturbed free surface ΣF . The free-surface pressure pF and
flux qF are also presumed to be specified at every point (x, y, 0) of ΣF . One has pF = 0 for most ships,
but pF 6= 0 for some types of vessels like hovercrafts and Surface-Effect-Ships. The free-surface flux qF

is considered because it is useful for the Green function associated with the boundary condition (1b).

The special case F = 0 of the boundary-value problem (1) is a trivial case for which practical solutions
exist. The ‘forward-speed case’ F 6= 0 is hugely more complicated. In the special case f = 0, a practical
solution to the Neumann-Kelvin theory proposed by Brard in 1972 and Guevel in 1974 exists [1]. The
boundary-value problem (1) is far more complicated in the general case τ 6= 0 than in the special case



f = 0. Although useful solution procedures have been reported in the literature, not reviewed here, a
fully satisfactory method for solving this difficult important problem remains a difficult goal.

3. Green function

A Green function G(x, x̃) that is associated with the Laplace equation (1a) and the free-surface
boundary condition (1b) is now introduced. Specifically, this Green function satisfies the equations

(∂2
x + ∂2

y + ∂2
z )G =

δ(x− x̃) δ(y − ỹ) δ(z − z̃) in z < 0

{∂z + (ifε−F ∂x)2}G = 0 at z = 0

 if z̃ < 0


(∂2
x + ∂2

y + ∂2
z )G = 0 in z < 0

{∂z + (ifε−F ∂x)2}G =
− δ(x− x̃) δ(y − ỹ) at z = 0

 if z̃ = 0 (2)

The sign difference between the term +F ∂/∂x that appears in the free-surface boundary condition (1b)
satisfied by the flow potential φ(x) and the term −F ∂/∂x that appears in the free-surface boundary
conditions satisfied by the Green function G(x, x̃) stems from the differentiation with respect to the
coordinates of the source point x (rather than differentiation with respect to the coordinates of the flow
field point x̃) that is used in (2). Indeed, the Green function G(x, x̃) defined by (2) is a function of
x − x̃ , and the term −F ∂/∂x in the free-surface boundary conditions in (2) yields +F ∂/∂x̃ as in the
free-surface boundary condition (1b). Thus, the Green function G(x, x̃) defined by (2) represents the
velocity potential of the flow created at a point x̃ ≡ (x̃, ỹ, z̃ ≤ 0) by a unit source located at a point
x ≡ (x, y, z < 0) or by a unit flux at a point x ≡ (x, y, z = 0) of the free surface.

This Green function can be expressed as

4πG = GS +GF/π (3a)

where GS is defined in terms of elementary free-space singularities (Rankine sources), and GF accounts
for free-surface effects and is given by a double Fourier integral. Specifically, GS is defined as

GS≡ −1

r
+

1

r′
where

{
r ≡

√
(x̃− x)2 + (ỹ − y)2 + (z̃ − z)2

r′ ≡
√

(x̃− x)2 + (ỹ − y)2 + (z̃ + z)2

}
(3b)

The free-surface component GF in (3) is given by a Fourier superposition of elementary waves Ẽ and E :

GF ≡
∫ ∞
−∞
dβ

∫ ∞
−∞
dα

Ẽ E
∆ + iε∆f

where

 Ẽ ≡ e
k z̃+i(αx̃+β ỹ )

E ≡ e kz− i (αx+β y )

0 < ε� 1

 and

 k ≡
√
α2 + β2

∆ ≡ (f+Fα)2− k
∆f ≡ 2(f+Fα)

 (3c)

Here, k is the wavenumber, the function ∆(α, β ; f, F ) is related to the dispersion relation ∆ = 0, and
∆f ≡ ∂∆/∂f denotes the derivative of the dispersion function ∆ with respect to the wave frequency f .

The Fourier representation (3c) contains waves as well as a nonoscillatory local flow component.
Global analytical approximations, valid within the entire flow region z̃ + z ≤ 0, to the local flow
component L and its gradient ∇L are given in [2] for the special case F = 0 and in [3,4] for the special
case f = 0, and the Green functions for these two special cases can easily be evaluated. No such
analytical approximation exists for the Green function defined by (3c) in the general case τ 6= 0.

4. Classical boundary-integral relations

Application of Green’s classical identity to the flow potential φ(x) and the Green function G(x, x̃)
in the mean flow region D bounded by the free surface ΣF and the ship hull surface ΣH yields∫

D

dv φ∇2G =

∫
Σ
F

dxdy (φGz −Gφz ) +

∫
Σ
H

da(Gq
H
− φGn) (4)

where the Laplace equation (1a) and the boundary condition (1c) at the ship hull surface ΣH were used,
dv denotes the differential element of volume of D, and Gn ≡ ∇G · n is the derivative of G along the
unit vector n normal to ΣH . As was already noted, n points into the water.

The integrand of the integral over the free surface ΣF can be expressed as

φGz −Gφz = φ [∂z + (ifε−F ∂x)2 ]G−G[∂z + (ifε+F ∂x)2 ]φ+ ∂x [2ifεFGφ+F 2(Gφx− φGx)]

This relation and the Green identity (4) then yield∫
D

dv φ∇2G−
∫

Σ
F

dxdyφ [∂z + (ifε−F ∂x)2 ]G =

∫
Γ

dy [2ifεFGφ+F 2(Gφx− φGx)]

+

∫
Σ
H

da(Gq
H
− φGn)−

∫
Σ
F

dxdyGπF

where πF is given by (1b) and Stokes theorem was used to transform a surface integral over the undis-
turbed free surface ΣF into a line integral around the mean ship waterline Γ. Equations (2) then yield



C̃ φ̃ =

∫
Γ

dy [2ifεFGφ+F 2(Gφx− φGx)] +

∫
Σ
H

da(Gq
H
− φGn)−

∫
Σ
F

dxdyGπF (5)

where C̃ ≡
∫
D

dv∇2G−
∫

Σ
F

dxdy [∂z + (ifε−F ∂x)2 ]G (6)

The relations (2) show that one has C̃ = 1 for points x̃ ≡ (x̃, ỹ , z̃) located inside the flow region D∪ΣF ,

C̃ = 0 for points x̃ outside the flow region, i.e. within the region D′∪Σ′F inside the mean wetted hull

surface ΣH , and C̃ = 1/2 for points x̃ of the hull surface ΣH ∪Γ. This classical result holds for z̃ ≤ 0.

5. Modified boundary-integral relation

Define C̃ ′ ≡
∫
D′
dv∇2G−

∫
Σ′
F

dxdy [∂z + (ifε−F ∂x)2 ]G (7a)

The relations (2), (6) and (7a) show that one has C̃ + C̃ ′ = 1 for all points x̃ in the lower half space
z̃ ≤ 0. Successive applications of the divergence theorem for the region D′ and Stokes’ theorem for the
undisturbed waterplane Σ′ located inside the mean waterline Γ yield

C̃ ′ =

∫
Σ
H

daGn−
∫

Σ′
F

dxdy (ifε−F ∂x)2G =

∫
Σ
H

daGn−
∫

Γ

dy (f2
ε G

x+ 2ifεFG−F 2Gx) (7b)

Addition of the term C̃ ′ φ̃ on both sides of the classical boundary-integral relations (5), with C̃ ′

given by (7a) or (7b) on the left or right sides of (5), yields the modified boundary-integral relation

Γ̃φ̃ =

∫
Σ
H

da [Gq
H
− (φ− φ̃)Gn ] +

∫
Γ

dy [(2iτ G−F 2Gx)(φ− φ̃) +F 2Gφx ]−
∫

Σ
F

dxdyGπF (8a)

or φ̃ =

∫
Σ
H

da [G̃q
H
− (φ− φ̃)G̃n ] +

∫
Γ

dy [(2iτ G̃−F 2G̃x)(φ− φ̃) +F 2G̃φx ]−
∫

Σ
F

dxdy G̃πF (8b)

where Γ̃ ≡ 1+f2

∫
Γ

dyGx = 1−f2

∫
Σ′
F

dxdyG and G̃(x, x̃) ≡ G(x, x̃)/Γ̃(x̃) (8c)

denotes a modified Green function [5]. The boundary-integral relations (8a) and (8b) hold for all

flow-field points (x̃, ỹ, x̃ ≤ 0) and are equivalent to the three classical relations (5) with C̃ = 1, 0 or 1/2
for points x̃ inside the flow region D ∪ΣF , within the region D′ ∪Σ′F or at the boundary ΣH ∪Γ. In
the special case F = 0, i.e. for wave diffraction-radiation without forward speed, the boundary-integral
relations (8) are identical to the relation given in [5]. In the special case f = 0, i.e. for steady flow
around a ship advancing in calm water, the hull flux q

H
is given by q

H
= nx and equations (8) yield

φ̃ =

∫
Σ
H

da [Gnx− (φ− φ̃)Gn ]−F 2

∫
Γ

dy [Gx (φ− φ̃)−Gφx ]−
∫

Σ
F

dxdyGπF (9)

The thin band of water located between the plane z = 0 and the linear approximation z = F 2(φx− pF )
to the free-surface elevation yields a linear contribution to the term Gnx in the integrand of the integral
over the hull surface ΣH in (9) that exactly cancels out the term Gφx in the integral around the ship
waterline Γ, as is shown in [1] and is easily verified. Within the framework of this consistent linear flow
model of steady ship waves, called Neumann-Michell theory, the relation (9) then becomes

φ̃ =

∫
Σ
H

da [Gnx− (φ− φ̃)Gn ]−F 2

∫
Γ

dy Gx (φ− φ̃)dy +F 2

∫
Σ
F

dxdy Gxp
F (10)

Here, the free-surface flux qF in (1b) is assumed to be nil, and Stokes’ theorem was applied to express
the integral of (GpF )x over the free surface ΣF as a line integral around the ship waterline Γ.

6. Embedding of the waterline integral into the hull-surface integral

The Rankine component GS in the basic decomposition (3a) of the Green function G is nil at the
free-surface plane z = 0. The component GS , and its derivative GSx therefore do not appear in the
integrals over the free surface ΣF and the waterline Γ in the boundary-integral relations (8) and (10).
Expression (3c) shows that the contribution of the free-surface component GF in (3a) to the integrals
over the hull surface ΣH and the waterline Γ on the right side of (8) is given by∫ ∞

−∞
dβ

∫ ∞
−∞
dα
Ẽ (AH+AΓ)

∆ + iε∆f
where

{
AH ≡

∫
Σ
H
da [q

H
+ i(αnx+βny + iknz)(φ− φ̃)]E

AΓ≡
∫

Γ
dy [ i(2τ +F 2α)(φ− φ̃) +F 2φx ]E

}
(11)

The line integral around the waterline Γ that defines the wave-amplitude function AΓ in the Fourier-
Kochin representation (11) is now embedded into the surface integral over ΣH .

At a point x = (x, y, 0) of the mean waterline Γ, the unit vector n ≡ (nx, ny, nz) normal to the ship
hull surface ΣH , the unit vector t ≡ (ny,−nx, 0)/1z where 1z ≡

√
1− (nz)2 tangent to Γ, and the unit

vector s ≡ n × t ≡ (nznx/1z, nzny/1z,−1z ) tangent to ΣH form a local system of three orthogonal



unit vectors. The vector s is nearly vertical and points downward. The point x′ ≡ x − z s(x), where
x ≡ (x, y, 0) is a point of the ship waterline Γ, z ≤ 0 and s(x) is the unit vector s at the point x, is
given by x′ ≡ (x′, y′, z′) = (x − znznx/1z, y − znzny/1z, z1z). The point x′ nearly rests on the hull
surface ΣH over the upper part of the port and starboard sides of a common ship hull, specifically for
−δ ≤ z ≤ 0 where δ is smaller than the local draft d ≡ D/L of the ship hull. Integration of the function
(1+ z/δ)2E , where E is the elementary wave function defined by (3c), along the line x−z s(x) yields∫ 0

−δ
dz(1+ z/δ)2 e kz

′− i (αx′+β y′ ) =
δ/3

Kδ
e− i (αx+β y) where (12)

Kδ ≡ (k3
δ/6)/(1− kδ + k2

δ/2− e−kδ) and kδ ≡ [k
√

1− (nz)2 + inz(αnx + βny )/
√

1− (nz)2 ]δ (13)

One has Kδ ∼ 1 as kδ → 0 and 3Kδ/δ ∼ 1 as kδ → ∞. The relation (12) can be used to express the
waterline integral in (11) as the hull-surface integral

AΓ = −
∫

Σ
H

da
Kδ

δ/3
Hδ
(
1+

z

δ

)2
[ i(2τ +F 2α)(φΓ− φ̃) +F 2φΓ

x ]
nx

1z
E where Hδ ≡ H(ζ+ δ) (14)

H(·) in (14) is the Heaviside unit-step function, and φΓ and φΓ
x mean that φ and φx are evaluated at

the mean waterline Γ. The representation (14) smoothly spreads the waterline integral AΓ in (11) over
the upper part −δ ≤ z ≤ 0 of the ship hull surface ΣH .

The hull-surface integral AH in (11) can be expressed as

AH =

∫
Σ
H

da [q∗
H

+ i(αnx+ βny+ iknz)(φ∗− φ̃)+Hδ
(
1+

z

δ

)2
{qΓ

H
+ i(αnx+ βny+ iknz)(φΓ− φ̃)}]E (15)

where

{
q∗
H

φ∗− φ̃

}
≡ (1−Hδ )

{
q
H

φ− φ̃

}
+Hδ

[{
q
H

φ− φ̃

}
−
(
1+

z

δ

)2{ qΓ
H

φΓ− φ̃

}]
(16a)

Expressions (15) and (14) show that (11) can finally be expressed as∫ ∞
−∞
dβ

∫ ∞
−∞
dα

ẼA
∆ + iε∆f

where A =

∫
Σ
H

da [q∗
H

+ i(αnx+ βny+ iknz)(φ∗− φ̃)+Hδ
(
1+

z

δ

)2
aΓ
H ]E (16b)

and aΓ
H ≡ qΓ

H
+ i

[(
α− (2τ +F 2α)

3Kδ/δ√
1− (nz)2

)
nx+ βny+ iknz

]
(φΓ− φ̃)− (3Kδ/δ)nx√

1− (nz)2
F 2φΓ

x (16c)

In (16b), q∗
H

and φ∗ are given by (16a); and Kδ in (16c) is given by (13). The terms multiplied by
Hδ ≡ H(ζ + δ) in (16a) and (16b) are nil for z ≤ −δ, where 0 < δ < d is the local draft of the ship
hull. The second term in (16a) vanishes at the mean waterline Γ, where z = 0. Expression (16a) yields
smooth variations of q∗

H
and φ∗ at the transition z = −δ. In the special case f = 0, (16c) becomes

aΓ
H ≡ nx+ i

[(
1− F 2 3Kδ/δ√

1− (nz)2

)
αnx+ βny+ iknz

]
(φΓ− φ̃) (17)

7. Conclusions

The boundary-integral representation (8), and the related Fourier-Kochin representation (16) of the
wave-component associated with the integrals over the ship hull surface ΣH and the ship waterline Γ
in (8), is significantly better suited for accurate numerical evaluation than the classical formulation (5).

In particular, (8) and (16) involve φ − φ̃ instead of φ in (5). Moreover, (8) and (16b) do not involve
a line integral around the ship waterline Γ. Thus, numerical cancellations that may occur between
the hull-surface and waterline integrals (which are difficult to evaluate with high accuracy) in the
classical boundary-integral formulation (5) occur among analytical functions (that can be evaluated
very accurately) in the function aΓ

H defined by (16c).
In the special case f = 0, i.e. for ship waves in calm water, the boundary-integral relation (10) and

the related expressions (16a), (16b) and (17) provide an interesting alternative to the formulation of the
NM theory [1]. This theory has been largely validated and applied for hull-form optimization.

The term F 2Gφx in (8a) is eliminated in (10) via the consideration of a consistent linear flow model.
However, the formulation of a consistent linear flow model is far less clear if f 6= 0.

Other issues, notably the filtering of short waves, may have important effects on numerical solutions.
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