Boundary-integral relations in the theory of ship motions in regular waves
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Highlight
The classical boundary-integral formulation of potential flow around a ship that travels at a constant
speed in regular waves is reconsidered, and a modified formulation that is significantly better suited for
accurate numerical evaluation than the classical formulation is given. In the special case of a ship that
travels in calm water, the modified boundary-integral formulation obtained here provides an interesting
alternative to the formulation of the Neumann-Michell theory given previously.

1. Introduction and basic notation

The flow around a ship hull, of length L, that travels along a straight path, at a constant speed V,
through time-harmonic (regular) ambient waves in water of large depth and lateral extent is considered
within the usual framework of linear potential flow theory. The flow is observed from a Galilean system
of coordinates that advances along the path of the ship at the ship speed V. The encounter frequency of
the ambient waves is denoted as w. The X axis is chosen as the path of the ship and points toward the
ship bow. The Z axis is vertical and points upward, and the undisturbed free surface is taken as the
plane Z = 0. The mean wetted hull surface of the ship and its intersection with the undisturbed free-
surface plane Z = 0 are denoted as X and I', which is oriented clockwise when viewed from above the
free-surface plane Z = 0, and X denotes the undisturbed free surface outside the mean ship waterline
I'. The nondimensional wave frequency f, the Froude number F' and the related parameter 7 are defined

as f =w+\/L/g,F =V//gL and 7 = fF = Vw/g, where g denotes the acceleration of gravity.

The coordinates x = (z,y,2 < 0) and x = (7,7,2 < 0), used further on, the time ¢, the flow
potential ¢, velocity Vx ¢, pressure p and surface flux ¢ are nondimensional in terms of the length L and
the speed V' of the ship, the gravitational acceleration g and the water density p, as follows:

x=X/L,t=T\g/L, $=®/(VL), Ve = Vx®/V , p=P/(pV?), ¢=Q/V
The unit vector n = n(x) = (n®,nY,n?) normal to ¥ at a point x of 3, points outside the ship (into
the water). The unit vector t = (¢*,t¥,0) = (n¥,—n*,0)/A/1— (n*)? tangent to the mean waterline T’
at a point x = (z,y,0) of I' points toward the bow or the stern of the ship on the positive half 0 < y or
the negative half y < 0 of I

2. Generic boundary-value problem
The flow potential (ZA)(X,t) is expressed as (Z(X,t) =Rep(x)e et where f. = f+icand 0 < e < 1.

This flow potential satisfies the initial conditions ¢ = 0 and 9¢/dt = 0 for t = —oo. The spatial
component ¢(x) vanishes as |x| — oo, and satisfies the Laplace equation
V= (0] +0;+02)9p=0 (1a)
in the undisturbed flow region D, the linearized boundary condition
(0. + (if4+F0.)? )¢ = (it +F20,)p" — ¢ = 7" (1b)
at the undisturbed free surface ¥ and the Neumann boundary condition
n-V¢ =0¢/0n = q, where ¢, =n- vy (1c)

at the mean wetted hull surface X of the ship.

In the generic boundary-value problem (1) considered here, the flux ¢, related to the normal com-
ponent of the velocity vi; = V;/V of the ship is presumed to be given at every point x of ¥, in
the boundary condition (1c). In the boundary condition (1b), p*(x,y) and ¢¥(x,y) represent eventual
pressure and flux distributions at the undisturbed free surface ¥ . The free-surface pressure pF and
flux ¢" are also presumed to be specified at every point (z,y,0) of - One has pF = 0 for most ships,
but pf # 0 for some types of vessels like hovercrafts and Surface-Effect-Ships. The free-surface flux ¢’
is considered because it is useful for the Green function associated with the boundary condition (1b).

The special case F' = 0 of the boundary-value problem (1) is a trivial case for which practical solutions
exist. The ‘forward-speed case’ F' # 0 is hugely more complicated. In the special case f = 0, a practical
solution to the Neumann-Kelvin theory proposed by Brard in 1972 and Guevel in 1974 exists [1]. The
boundary-value problem (1) is far more complicated in the general case 7 # 0 than in the special case



f = 0. Although useful solution procedures have been reported in the literature, not reviewed here, a
fully satisfactory method for solving this difficult important problem remains a difficult goal.

3. Green function

A Green function G(x,X) that is associated with the Laplace equation (la) and the free-surface
boundary condition (1b) is now introduced. Specifically, this Green function satisfies the equations

(07402 +02)G = (0240} +02)G=0inz<0
6(x—2)6(y—y)6(z2—2)in 2<0}if <0 (0. + (if. — F9,)°} G = ifz=0 (2
{0, +(if.—F0,)*)}G=0at z=0 —0(x—2)0(y—y)at 2=0

The sign difference between the term +F 9/dx that appears in the free-surface boundary condition (1b)
satisfied by the flow potential ¢(x) and the term —F d/0x that appears in the free-surface boundary
conditions satisfied by the Green function G(x,X) stems from the differentiation with respect to the
coordinates of the source point x (rather than differentiation with respect to the coordinates of the flow
field point X) that is used in (2). Indeed, the Green function G(x,X) defined by (2) is a function of
x — 2, and the term —F 9/dx in the free-surface boundary conditions in (2) yields +F 9/0% as in the
free-surface boundary condition (1b). Thus, the Green function G(x,X) defined by (2) represents the
velocity potential of the flow created at a point X = (Z,%,2 < 0) by a unit source located at a point
x = (z,y,2z < 0) or by a unit flux at a point x = (x,y,z = 0) of the free surface.

This Green function can be expressed as
417G =G+ G¥In (3a)
where G° is defined in terms of elementary free-space singularities (Rankine sources), and G¥" accounts
for free-surface effects and is given by a double Fourier integral. Specifically, G° is defined as

1 1 = S22t (0 —0)2+ (2 —2)2
Gi= — + — where " \/(gi TR+ (?i Y+ (i ?) (3b)
N ¢ = E P Tyt (P
The free-surface component G in (3) is given by a Fourier superposition of elementary waves Eand & :
. 00 [ 55 55@kz+'i(o‘m+ﬁy) ICE\/Q2+262
G"' = dﬁ dam where gzeszl(az‘i’ﬁy) and AE(f—f—FO{) —k (3C)
—o0 ) leny OD<exl AfEQ(f—FFOé)

Here, k is the wavenumber, the function A(a, 8; f, F) is related to the dispersion relation A = 0, and
Ay = 0A/0f denotes the derivative of the dispersion function A with respect to the wave frequency f.

The Fourier representation (3c) contains waves as well as a nonoscillatory local flow component.
Global analytical approximations, valid within the entire flow region z + z < 0, to the local flow
component L and its gradient VL are given in [2] for the special case F'= 0 and in [3,4] for the special
case f = 0, and the Green functions for these two special cases can easily be evaluated. No such
analytical approximation exists for the Green function defined by (3¢) in the general case T # 0.

4. Classical boundary-integral relations

Application of Green’s classical identity to the flow potential ¢(x) and the Green function G(x,X)
in the mean flow region D bounded by the free surface X and the ship hull surface ¥ yields

[ 40w = [ day(6G. ~ Go.) + [ da(Ga, - 6G0) (4)
D > )

F H
where the Laplace equation (1a) and the boundary condition (1c) at the ship hull surface ¥, were used,

dv denotes the differential element of volume of D, and G,, = VG- n is the derivative of G along the
unit vector n normal to X ;. As was already noted, n points into the water.

The integrand of the integral over the free surface ¥, can be expressed as

0G: = Go: = §[0: + (1= FO)*)G = G0 + (ife+ F02)*| ¢+ 02 [21f. FG ) + F* (G b — 6 Ga)]
This relation and the Green identity (4) then yield

/ dv ¢ V°G f/ dzdyd[0. + (if.— F0,)*|G :/ dy[2if.FG+F*(Gor — ¢ Gy)]
D b r
" +/ da(GqH—qun)—/ dedyGrf

EH ZF
where ! is given by (1b) and Stokes theorem was used to transform a surface integral over the undis-
turbed free surface ¥ into a line integral around the mean ship waterline I'. Equations (2) then yield



Co /dy [2ifFG¢+F*(G¢, — ¢ Gy)] /Zda( L — Gy )f/E drdyGr" (5)

where C = /deQG / dzdy[0, + (if. — F9,)*|G (6)

The relations (2) show that one has C' =1 for pomts X = (7,9, ) located inside the flow region DUY .,
C = 0 for points X outside the flow region, i.e. within the region D’ U¥’. inside the mean wetted hull
surface ¥, and C' = 1/2 for points X of the hull surface ¥, UT. This classical result holds for z < 0.

5. Modified boundary-integral relation
Define 5’5/ dvV?G — | dxdyld. + (if. —F0,)%|G (7a)

’ 2/};‘
The relations (2), (6) and (7a) show that one has C' +C’ = 1 for all points X in the lower half space

Z < 0. Successive applications of the divergence theorem for the region D’ and Stokes’ theorem for the
undisturbed waterplane Y’ located inside the mean waterline I" yield

c’ :/ daGn—/ dxdy(ifE—FazFG:/ daGn—/dy(ffG””—i— 2if.FG — F*G,) (7b)
po Py Sy r

Addition of the term C’ 5 on both sides of the classical boundary-integral relations (5), with C’
given by (7a) or (7b) on the left or right sides of (5), yields the modified boundary-integral relation

w>/da&sz )G ]Aﬁﬂﬁﬂ?Fz)w %+F%m«]EMM% (a)
or 3 /mum—w¢¢>dfﬁmmw0 FG,)(6— &) + F*G ) /dwwh (b)
where T' = 1—i—f/clyG“c =1-f?| dadyG and G(x,X) = (X,x /T(X) (8c)

%

denotes a modified Green function [5]. The boundary-integral relations (8a) and (8b) hold for all
flow-field points (Z,y,Z < 0) and are equivalent to the three classical relations (5) with C=1,00r1 /2
for points X inside the flow region D UX ., within the region D' UX/ or at the boundary ¥, UT. In
the special case F' = 0, i.e. for wave diffraction-radiation without forward speed, the boundary-integral
relations (8) are identical to the relation given in [5]. In the special case f = 0, i.e. for steady flow
around a ship advancing in calm water, the hull flux ¢, is given by ¢, = n® and equations (8) yield

¢ /daGn—(¢ $)G F/dy 2 (60— &) — G /da:dyGw (9)

The thin band of water located between the plane z = 0 and the linear approximation z = F?(¢, — p%)
to the free-surface elevation yields a linear contribution to the term Gn” in the integrand of the integral
over the hull surface ¥, in (9) that exactly cancels out the term G ¢, in the integral around the ship
waterline T, as is shown in [1] and is easily verified. Within the framework of this consistent linear flow
model of steady ship waves, called Neumann-Michell theory, the relation (9) then becomes

6= dalGr (6~ 9)Go) ~ 1 [ dy G0~ D)y + F[ drdyGp” (10)
o r >

Here, the free-surface flux ¢ in (1b) is assumed to be nil, and Stokes’ theorem was applied to express
the integral of (Gp!"), over the free surface X}, as a line integral around the ship waterline T.

6. Embedding of the waterline integral into the hull-surface integral

The Rankine component G in the basic decomposition (3a) of the Green function G is nil at the
free-surface plane z = 0. The component G, and its derivative G therefore do not appear in the
integrals over the free surface ¥ and the waterline I" in the boundary-integral relations (8) and (10).
Expression (3c) shows that the contribution of the free-surface component G¥' in (3a) to the integrals
over the hull surface ¥, and the waterline I" on the right side of (8) is given by

AH Al AH = dalg, +i(an®+pnY +ikn? —ME

/d,@/ ( +A)Where{ ! Js, dala, (2 B’ 2)(fb ¢)] } an
Tiesy A= [ dy[i(2r +F2a)(6 - ) +F20, )€

The line integral around the waterline I' that defines the wave-amplitude function A" in the Fourier-

Kochin representation (11) is now embedded into the surface integral over ¥ .

At a point x = (x,y,0) of the mean waterline I', the unit vector n = (n*,n¥%,n*) normal to the ship
hull surface ¥, the unit vector t = (n¥, —n®,0)/1* where 1* =4/1— (n*)2 tangent to I, and the unit
vector s = n X t = (n*n®/1%,n%n¥/1%, —1%) tangent to X form a local system of three orthogonal



unit vectors. The vector s is nearly vertical and points downward. The point x' = x — zs(x), where
x = (z,y,0) is a point of the ship waterline I', z < 0 and s(x) is the unit vector s at the point x, is
given by x' = (2/,y',2') = (x — zn*n"/1%,y — zn*n¥Y/1% 21%). The point x’' nearly rests on the hull
surface ¥, over the upper part of the port and starboard sides of a common ship hull, specifically for
—0 < z <0 where ¢ is smaller than the local draft d = D/L of the ship hull. Integration of the function
(14 2/6)2E, where € is the elementary wave function defined by (3c), along the line x — 2 s(x) yields

0
/ dz(1+2/5)26kz/_i(°‘xl+ﬁy/) = %—?e_i(arJ’ﬁy) where (12)

K°= (k2/6)/(1— ks + k2/2— %) and k; = [k\/1— (n?)? + in*(an® + BnY)\/1— (n*)2]6  (13)
One has K° ~ 1 as k; — 0 and 3K%/6 ~ 1 as k; — oo. The relation (12) can be used to express the
waterline integral in (11) as the hull-surface integral

AT = /da;%m(ua) [i(2r + F0)(6" ~ §) + F25] " "¢ where HO= H(C+6)  (14)

H() in (14) is the Heaviside unit-step function, and ¢! and ¢. mean that ¢ and ¢, are evaluated at

the mean waterline I'. The representation (14) smoothly spreads the waterline integral AT in (11) over
the upper part —§ < z < 0 of the ship hull surface ¥.

The hull-surface integral A¥ in (11) can be expressed as

A /da q;, Filan®+ pn?+ikn®)(¢" - ¢)+H6<1+5) {qH i(an® +Bny+1k;n ) (o' — ] (15)

where T J qH~ J U — a
8 R RO

Expressions (15) and (14) show that (11) can finally be expressed as

/_Oodﬁ/_ooda AfiAf where A :/2 da[q;, +i(an”+ Bn? +ikn®)(¢" — (E)—&—H‘;(l—l— §)2a§{}5 (16b)
§ 0 - ) T
( - (27 +F2a)fi((/ni)2> n®+ fn¥ + iknzl (¢"— o) — (35_/(‘22”)2 F?¢l,  (16¢)

In (16b), ¢ and ¢* are given by (16a); and K9 in (16¢) is given by (13). The terms multiplied by
H® = H(¢+ ) in (16a) and (16b) are nil for z < —4, where 0 < § < d is the local draft of the ship
hull. The second term in (16a) vanishes at the mean waterline I', where z = 0. Expression (16a) yields

and al;lzqg—&—i

smooth variations of ¢7 and ¢* at the transition z = —¢. In the special case f = 0, (16c) becomes
F23K9/5 -
ay, =n*41i (l—l(/)2>an”¢+6ny+iknzl (o' — @) (17)
— nZ

7. Conclusions

The boundary-integral representation (8), and the related Fourier-Kochin representation (16) of the
wave-component associated with the integrals over the ship hull surface X, and the ship waterline I
in (8), is significantly better suited for accurate numerical evaluation than the classical formulation (5).
In particular, (8) and (16) involve ¢ — ¢ instead of ¢ in (5). Moreover, (8) and (16b) do not involve
a line integral around the ship waterline I". Thus, numerical cancellations that may occur between
the hull-surface and waterline integrals (which are difficult to evaluate with high accuracy) in the
classical boundary-integral formulation (5) occur among analytical functions (that can be evaluated
very accurately) in the function al; defined by (16c).

In the special case f = 0, i.e. for ship waves in calm water, the boundary-integral relation (10) and
the related expressions (16a), (16b) and (17) provide an interesting alternative to the formulation of the
NM theory [1]. This theory has been largely validated and applied for hull-form optimization.

The term F?G ¢, in (8a) is eliminated in (10) via the consideration of a consistent linear flow model.
However, the formulation of a consistent linear flow model is far less clear if f # 0.

Other issues, notably the filtering of short waves, may have important effects on numerical solutions.
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