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Consider a rectangular tank of length L, width B, filled with water to a height h. The natural
sloshing modes in the tank are

ϕmn =
cosh νmnz

cosh νmnh
cos λmx cosµny (1)

where the coordinate center has ben taken at one of the lower corners and λm = mπ/L, µn = nπ/B,
ν2
mn

= λ2
m
+ µ2

n
. Each geometric mode (m,n) is a natural mode with frequency ωmn given by ω2

mn
=

g νmn tanh νmnh. When the tank is square then the natural frequencies ωmn and ωnm collapse to the
same values.

In a rectangular moonpool a natural sloshing mode consists in the superimposition of several geo-
metric modes (m,n), one of which is usually dominant over the others. Recently Molin et al. (2017)
have extended the original theory of Molin (2001) to finite depth and considered, as a validation case,
among others, a square moonpool proposed by Ideol as a floating windmill foundation (Guignier et al.
2016). There it has been found that the natural frequencies ω20 and ω02 do not collapse to the same
value. In this paper we more deeply investigate the issue.

Figure 1: Geometry.

Fig. 1 shows the geometry of the problem. The inner fluid domain is divided into two sub-domains:
the moonpool, and a lower sub-domain bounded by the keel, the sea-floor and a vertical cylinder where
the velocity potential is taken to be nil. This is a gross condition to ensure matching with the outer
fluid domain, however it has been found to provide valuable results (Molin et al. 2017).

Alike in Molin (2001), the velocity potential in sub-domain 1 (the moonpool) is taken as

ϕ1(x, y, z) = A00 +B00
z

d
+

∞∑

m=0

∞∑

n=0

(m,n)6=(0,0)

[Amn cosh νmnz +Bmn sinh νmnz] cos λmx cosµny (2)

with
λm = mπ/L1 µn = nπ/B1 ν2

mn
= λ2

m
+ µ2

n
(3)

In the lower sub-domain it is

ϕ2(x, y, z) =

∞∑

p=1

∞∑

q=1

Cpq

cosh γpq(z + h)

cosh γpqh
sinαp(x+ a) sin βq(y + b) (4)



with
αp = p π/L2 βq = q π/B2 γ2

pq
= α2

p
+ β2

q
(5)

p and q integers, and a = (L2 − L1)/2, b = (B2 −B1)/2.

By equating ϕ1 and ϕ2 (and their vertical derivatives) on the common boundary (and ensuring the
no-flow condition ∂ϕ2/∂z = 0 on the hull), a vectorial equation in the form

−→
A = AB ·

−→
B can be

derived. The following steps are then identical with Molin (2001), i.e. solving an eigen-value problem
for

−→
B and obtaining the natural frequencies and associated modal shapes. An advantage of the new

model as compared to the previous one is that it is much cheaper to run numerically (there is no need
to compute complicated double integrals).

We take the same moonpool dimensions as in Guignier et al. (2016), that is 27 m × 27 m, the
same waterdepth (55 m), but we decrease the draft to 3 m. As for the outer vertical cylinder we take
L2 = B2 = 81 m.
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Figure 2: First (left) and second (right) sloshing modes. Natural frequencies.

In one run of the numerical model we get a discrete set of natural frequencies which we range in
increasing values. The lowest value corresponds to the piston mode, then come the first sloshing modes
dominated by the geometric modes (1,0) and (0,1), then the diagonal mode (1,1), then the second
sloshing modes that involve the geometric modes (2,0) and (0,2).

We keep all geometric parameters as written above, and we vary the width B1 from 26 m to 28 m.
Fig. 2 shows the natural frequencies obtained for the first sloshing modes (left) and for the second
sloshing modes (right). Considering first the left figure, it can be seen that the two curves intersect at
B1 = 27 m: when the moonpool is square the two modes coalesce to the same frequency. Looking now
at the right figure, it can be seen that it is not the case for the second modes: there are two distinct
frequencies in the square case and the curves do not intersect.

As written above, when the moonpool is rectangular, each natural mode is dominated by one
geometric mode. Fig. 3 shows the geometric modes (m,n) that contribute to the the second sloshing
modes. The contributions are normalized by a maximum value of one. The left figure is for the lower
branch in Fig. 2b, the right figure is for the upper branch. As the moonpool becomes square, it can be
seen that both geometric modes (2,0) and (0,2) contribute, ultimately with the same absolute value.
At the lowest of the two frequencies, they add up algeabrically, at the highest one they subtract. A
small contribution from the geometric mode (0,0) can also be seen.

Figures 4 through 10 show the evolutions of the modal shapes of the free surface elevation as the
width goes from 26.5 m to 27.5 m. The left column is for the lower branch in Fig. 2b, the right column
for the upper branch. It can be seen that the longitudinal sloshing mode continuously transforms into
the transverse sloshing mode, and vice versa.
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Figure 3: Participation of the geometric modes (m,n) to the second sloshing modes.
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Figure 4: Width 26.5 m.

Figure 5: Width 26.8 m.

Figure 6: Width 26.9 m.



Figure 7: Width 27 m.

Figure 8: Width 27.1 m.

Figure 9: Width 27.2 m.

Figure 10: Width 27.5 m.


