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HIGHLIGHTS

We show that the methods used to analyse complex hydroelastic behaviour of ships can be applied to
model the motion of ice shelves. We use a special boundary condition and the finite element method,
which is suited to extension to complex geometries, to solve Laplace’s equation. We present example
calculations in the time–domain that show the importance of resonances.

1 Introduction and Problem Formulation

We are interested in modelling the impact of very long ocean surface waves on ice shelves, primarily
waves in the tsunami–infragravity regime (Cathles et al., 2009; Bromirski et al., 2015, 2017), using
methods developed to predict the hydroelastic motion of ships. We calculate the time-dependent re-
sponse of an ice shelf to wave forcing using the frequency-domain solution. The boundary conditions
at the front of the ice shelf, coupling it to the surrounding fluid, are written as a special non-local
linear operator with forcing. The ice shelf motion is expanded using the in vacuo elastic modes and
the method of added mass and damping, commonly used in the hydroelasticity of ships, is employed.
The analysis is extended from the frequency domain to the time domain, and the resonant behaviour
of the system is studied.

Time-dependent water motions are described by the velocity potential Φ(x, t), which is governed
by the linearized water-wave equations. The fluid is of constant depth h and the ice shelf extends
from x = −L to x = 0. We assume that the ice shelf can be modelled as a thin plate of uniform
thickness. We introduce non-dimensional equations by scaling the length with respect to the water
depth (which becomes unity) and time with respect to

√
h/g. The non-dimensional equations and

coordinate system are shown in the schematic diagram below.
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2 Solution of the frequency-domain equations

To convert to the frequency domain we simply assume that all quantities are proportional to
exp(−iωt), and write

w (x, t) = Re
{
ζ(x)e−iωt

}
, u (x, t) = Re

{
η(x)e−iωt

}
,

and Φ (x, z, t) = Re
{
ϕ(x, z)e−iωt

}
,

The potential in the semi-infinite open water region Ω− is

ϕ (x, z) =
coshK (z + 1)

coshK
eiKx +

∞∑
p=0

cpτp,0 (z) e
kp,0(x+L), (1)

where the first term on the right-hand side represents the unit-amplitude (in potential) incident
wave, with the wavenumber K being the positive real solution of the dispersion relation

K tanhK = α.

The functions τp,0 (z) are orthonormal modes given by

τp,0 (z) = N−1
p,0 cos kp,0 (z + 1) where Np,0 =

√
1

2
+

sin (2kp,0)

4kp,0
,

and the wavenumbers kp,0 are solutions of the dispersion relation

kp,0 tan kp,0 = −α,

with k0,0 = −iK defining the wave reflected by the shelf, k1,0 < k2,0 < · · · ∈ R+ defining evanescent
waves that decay away from the shelf, and cp are as yet unknown amplitudes.

We are going to solve for the motion in the sub-ice shelf cavity, Ω, using the finite element
method, requiring a boundary condition at x = 0. At the interface between the open water and the
shelf/cavity regions, x = −L+ (i.e. the limit from the ice shelf covered region), the potential and the
normal derivative are expanded as follows

ϕ
(
−L+, z

)
=

N∑
p=0

apτp,d (z) , − 1 < z < −d,

∂xϕ
(
−L+, z

)
=

N∑
p=0

bpτp,d (z) ,−1 < z < −d.

The functions τp,d (z) are orthonormal modes given by

τp,d (z) = N−1
p,d cos kp,d (z + 1) where Np,d =

√
1− d

2
+

sin (2kp,d (1− d))

4kp,d
,

in which kp,d (p ≥ 1) are positive real solutions and k0,d is the negative imaginary solution of the
dispersion equation

−kp,d tan (kp,d (1− d)) = α.

We require a mapping from the coefficients ap to bp. We find this by matching this potential and its
derivative with the solution in the open water Ω−.



We derive two equations at x = −L. The first comes from matching the potential and taking
the inner product with respect to τq,d (z) for q = 0, 1, . . .∫ −d

−1

coshK (z + 1)

coshK
e−iKLτq,d (z) dz +

N∑
p=0

cp

∫ −d

−1

τp,0 (z) τq,d (z) dz = aq,

or in the matrix form
f +Mc = a. (2)

Similarly, taking the inner product of the matching of the normal with respect to τq,0 (z) for
q = 0, 1, . . . , we obtain

−
∫ 0

−1

iK
coshK (z + 1)

coshK
e−iKLτq,0 (z) dz − kqcq =

N∑
p=0

bp

∫ −d

−1

τp,d (z) τq,0 (z) dz,

or in matrix form
−g − ⌈k⌋ c = MTb. (3)

Systems (2) and (3) can be combined to eliminate the unknown amplitudes in the open water,
c, leaving the condition

b = −
(
M ⌈k⌋−1MT

)−1
a−

(
M ⌈k⌋−1MT

)−1 (
M ⌈k⌋−1 g − f

)
.

This provides the necessary mapping between the expansion of the potential and its horizontal
derivative at x = −L, and is the Dirichlet–to–Neumann map in our expansion ap for the potential
and bp for the normal derivative. The solution of Laplace’s equations beneath the ice shelf are found
using the finite element method.

The frequency-domain version of the boundary condition beneath the ice shelf is

β∂4
xη − γω2η + η = iωϕ, (4)

with boundary conditions ∂2
xη = ∂3

xη = 0, x = −L, and η = ∂xη = 0, x = 0. We expand the ice
shelf motion using its in vacuo modes

η(x) =
∞∑
j=1

λjη
j(x), (5)

where λj are coefficients that are to be determined. The modes satisfy the ordinary differential
equation

d4

dx4
ηj (x)− µ4

jη
j (x) = 0, (6)

and the boundary conditions.
The corresponding expansion of the velocity potential in the cavity, Ω, is

ϕ(x, z) = ϕ0(x, z) +
∞∑
j=1

λjϕ
j(x, z), (7)

where ϕ0 is the diffraction potential and ϕj (j = 1, 2, ...), are the radiation potentials found using
the finite element method. In the standard way we can then write the solution as(

K− ω2M+C+ ω2A− iωB
)
λ =

iα

ω
f , (8)

where the matrices are known as the stiffness, mass, restoring force, added mass and damping.
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Figure 1: The displacement for the free surface (blue) and the plate (red) for a Gaussian input given

by f̂(K) = 2
π
e−2(K−2)2eiLK .

3 Time-domain solution and Numerical Results.

The time-domain solution for the free-surface potential is given by

ζ(x, t) = Re

{
1

π

∫ ∞

0

f̂(K)ζ(x : ω(K))e−iωt dK

}
, (9)

where f̂(K) of the incident wave packet. The displacement of the plate is given analogously.
Figure 1 shows the solution for 6 instants of time. The excitation of the four node mode is

visible, as expected since this is the mode response which is closest to our centre frequency. Further
numerical solutions will be presented at the workshop.

4 Conclusions

We have shown here how the motion of an ice shelf to wave forcing can be computed using methods
developed to analyse the hydroelastic behaviour of ships. We have also shown that this method
allows us to compute the motion in the time domain and to understand the resonant response. The
finite element method was used to model the fluid as it is ideally suited for extensions to more
complex, and realistic cavity shapes, and to the computation of the elastic response for shelves of
complex geometry. Such computations would greatly aid our understanding of ice shelf vibration.
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