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Introduction
The current trends in the seakeeping simulations seem to be more and more oriented toward the use of
the RANS based CFD methods instead of the more classical potential flow methods. There are several
reasons for that among which the inclusion of the nonlinear effects and the effects of the forward speed
are probably the most important ones. Indeed, due to the very complex behavior of the free surface for
large amplitude waves the potential flow methods have enormeous difficulties to model the associated
nonlinear effects, especially when the wave breaking occurs. In addition, the problem of seakeeping with
the forward speed also introduce the huge difficulties so that the fully consistent potential flow solution,
even linear, based on the Boundary Integral Equation (BIE) technique is still missing. On the other
hand, it must be recognized that the CFD methods became nowadays very efficient allowing for quite
accurate evaluation of the ship seakeeping characteristics for very general operating conditions. One of
the main drawbacks of the CFD are very large CPU time requirements which typically exceeds those of
potential flow by an order of magnitude. One of the ways to reduce the overall CPU time is to linearize
the seakeeping problem where by linearization we understand the linearization of the boundary conditions
only. This means that the other terms in the NS equations remain nonlinear. Lot of work has been done
in the past, regarding the linearization of the potential flow formulation [2, 5, 1, 3] but there are not so
many publications on the linearized Navier Stokes formulation [7].

Potential flow formulation
Before presenting the linearized problem for seakeeping within the CFD approach, it is useful to recall the
basic principles of the linearization within the potential flow approach. We start by defining the different
coordinate systems in Figure 1 [ O(X) = O(X,Y, Z) - earth fixed, o(x) = o(x, y, z) - steady translating
and o′ (x′ ) = o′ (x′ , y′ , z′ ) - ship fixed]. The problem of body advancing with constant forward speed U

Figure 1: Coordinate systems.

in X direction is equivalent to the problem of the uniform flow passing the ship. Since this approach is
preffered for the use within the CFD solution methodology we describe the fully nonlinear potential flow
problem using this terminology. In this case the coordinate systems O(X) and o(x) coincide and both
are earth fixed, with Z = z = 0 denoting the free surface position. The total potential Φ is represented
as the sum of the uniform flow potential −Ux and its perturbation denoted ϕ:

Φ(x, t) = ϕ(x, t)− Ux (1)

The velocity potential Φ(x, t) and the free surface position Ξ(x, y, t) define the pair of the unknown
quantities or state variables. At the free surface, they are related to each other through the kinematic
boundary condition (KBC) and the dynamic boundary condition (DBC). The kinematic boundary



condition states that the free surface is the material surface and it remains such for all times. This leads
to the following mathematical description:( ∂

∂t
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)
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∂Z
(2)

The dynamic free surface condition states that the pressure in the fluid and the pressure at the free
surface are equal to each other. The Bernoulli equation is used to calculate the pressure and we can
write:

p = −ϱ
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With this in mind, the dynamic free surface boundary condition for the potential ϕ becomes:( ∂
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)
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(∇ϕ)2 = −gΞ (4)

Within the potential flow formulation it is possible to combine the kinematic and the dynamic boundary
condition into one single condition. The easiest way to do this is to take the total time derivative of the
dynamic boundary condition. The following combined boundary condition is obtained (e.g. [2]):
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The above formulated potential flow problem is fully nonlinear and does not make any assumptions about
the particular nature of the flow. The problem is extremely complex and no consistent general numerical
solution exists due to the presence of highly nonlinear terms. That is why the different linearization
procedures were proposed in the past. The main goals of the linearization are to apply the boundary
conditions at the fixed boundaries and, at the same time, to make those conditions linearly dependent
on the unknown quantities. The linearization is usually performed in two steps. The first step consists
in assuming that the different flow quantities at the instantaneous boundary can be expressed as a small
perturbaton of the same quantities at their mean position. In that respect, both the kinematic and the
dynamic free surface conditions are expanded in Taylor series around the initial calm free surface z = 0.
The following expressions are obtained up to the order O(Ξ):
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where all quantities are to be evaluated at z = 0.
The second step in the linearization procedure, consists in developing the total solution into the dominant
part and the small perturbation around it. In that respect we formally decompose the state variables ϕ
and Ξ as follows:

ϕ(x, t) = ϕ0(x) + ϕ1(x, t) , Ξ(x, y, t) = Ξ0(x, y) + Ξ1(x, y, t) (7)

where ϕ0 denotes the basis flow, assumed to be time independent, and ϕ1 the perturbation flow.
For the time being we do not define the exact order of the different quantities and we just mention
that the basis flow state variables (ϕ0,Ξ0) are one order of magnitude larger than the perturbed ones
(ϕ1,Ξ1). However, the free surface elevation Ξ0 is still assumed to be small enough in order for Taylor
series expansion (6) to be valid. Formally we state that the basis flow quantities are of the order O(1)
and the perturbed quantities are of the order O(ε), without explicitely defining what is ε. It is important
to understand that, for the general case, this decomposition is not unique.
After introducing the decomposition (7) into (6), and neglecting the terms of the higher order, we obtain
the expressions (8) and (9) forkinematic and dynamic boundary conditions at first two orders. It is
important to note that, up to this point, the linearization procedure does not make any distinction in
between the steady and the unsteady potential flow at order O(ε) and all the conditions apply both to
the steady and the unsteady flow. In particular, when applied to the steady wave resistance problem,
the above free surface condition belongs to the so called Dawson type of approaches.
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Only in the case of the zero forward speed the linearization is trivial because the basis flow is naturally
equal to zero so that we can simply ignore all the quadratic terms in the above free surface conditions
(8, 9) and obtain:
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which are the well known kinematic, dynamic and combined free surface conditions for zero speed case.
In the case of non zero forward speed different choices for the basis flow have been proposed in the lit-
terature going from the simplest uniform flow approximation (ϕ0 = 0), passing thorugh the double body
flow linearization (∂ϕ0/∂z = 0 , at z = 0) and finally using the fully nonlinear steady flow [1].

Navier Stokes formulation
First of all, let us again mention that, in the present context, the linearization of the Navier Stokes equa-
tions means the linearization with respect to the boundary conditions only and other nonlinear terms in
the Navier Stokes equations remain. Within the Navier Stokes formulation the state variables are the
pressure in the fluid p and the flow velocity v = (u, v, w). We will not enter here into the details of the
Navier Stokes equations and just make the direct analogy in between the different expressions which were
formulated for the potential flow problem. Similar to potential flow formulation, and for the time being,
we will concentrate on the linearization around the mean free surface position z = 0 i.e. the solution
formally valid for small free surface disturbances. Whatever the formulation i.e. potential flow or Navier
Stokes, the free surface boundary condition will always consist of the similar kinematic (KBC) and the
dynamic (DBC) boundary conditions. Assuming the shear stress at the free surface to be negligible, we
can rewrite the conditions (6) in the form:
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The conditions have to be applied at z = 0, and the notation pd is used to denote the dynamic part of
the pressure:

pd(x) = p(x)− gz (12)

It is very important to understand that, even if the above conditions have to be applied at z = 0, they
remain nonlinear. It is also important to note that, if we could solve the seakeeping problem with the
above conditions, there will be no need for further linearization and the solution would be correct up to
the order O(Ξ), which was our final goal here. However, within the potential flow theory, solving the
above formulated problem is still not very convenient so that the additional effort has been made in order
to further linearize the free surface conditions. As we have seen, this additional linearization process,
passes through the separation of the total flow into the basis flow and its first order correction leading
to the quite complex final expressions. Within the Navier Stokes formulation it looks like solving the
problem directly with the above conditions (11) is much more convenient. Indeed, as already mentionned
there exist other nonlinear terms in the Navier Stokes equations which should be treated in nonlinear



sense anyway. This means that the boundary conditions at the free surface for the linearized Naviers
Stokes problem is defined by (11) and the rest of the procedure for solving the Navier Stokes equations
remains the same. The method described above was implemented within the OpenFOAM framework [6]
and herebelow we present few preliminary validation results.

Preliminary results and discussions
The well known test cases of MOERI (container ship KCS and tanker KVLCC2) were chosen for com-
parisons. In left part of Figure 2, the results for steady wave resistance of KCS are shown for Froude

Figure 2: Steady wave resistance (left) and the pitch excitation moment (right) for KVLCC ship.

number equal to 0.26. We can observe very good agreement in between the fully nonlinear, linear and
the experimental results. In the right part of the same figure, the results for the unsteady pitch excita-
tion are presented for KVLCC2. The CFD results are compared to potential flow results obtained by
HYDROSTAR. Once again, very good agreement in between two clases of results is observed. All this
shows that the linearized CFD model represents the fast and the efficient tool for seakeeping simulations
and can be used safely for the moderate sea conditions conditions.
We mention here that there exist some differences in between the formulation employed in [7] and the
present formulation. Indeed, in [7] the following kinematic and dynamic bundary conditions were used:( ∂

∂t
− U

∂
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)
Ξ = w , pd = −gΞ (13)

Comparisons in between the two formulations will be presented and discussed at the Workshop.
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