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Further to the work by Chen et al. [1] on waves generated by an impulsive perturbation around an infinite
vertical circular cylinder, we apply the Fourier-Laguerre spectral method to solve the wave diffraction
problem by a vertical cylinder in the time domain. For the choice of incoming waves, transient waves with
wavefront is adopted in present work, which is much more general than steady-state plane progressive
waves. While few analysis related to wavefront is made due to its complexity in numerical computations.
The present solution is verified by comparing with analytical transient diffraction solutions.

1 Fourier-Laguerre spectral method

A Cartesian coordinate system Oxyz is defined with the Oxy plane on the undisturbed free surface and
Oz axis pointing positively upward. Consider an infinitely long vertical cylinder fixed in deepwater with
its axis coinciding with the Oz axis. Applying the Green’s theorem in the fluid domain, we can write the
velocity potential as:

Φ (P, t) =

∫ t

0

∫∫
C

[Φn(Q, τ)G(P, t,Q, τ)− Φ(Q, τ)Gn(P, t,Q, τ)] dSdτ (1)

where P = (x, y, z) and Q = (ξ, η, ζ) represent flow-field point and source point, respectively; C denotes
the cylinder surface; and G is the transient Green function defined as [2]:

4πG(P, t,Q, τ) = δ (t− τ)G0 +H(t− τ)Gf (2)

In (2), δ(·) and H(·) are delta function and Heaviside step function; G0 and Gf are defined by:

G0 = − 1√
R2 + (z − ζ)2

+
1√

R2 + (z + ζ)2
and Gf = −2

∫ ∞
0

ek(z+ζ)J0 (kR)
√
gk sin

[√
gk(t− τ)

]
dk (3)

where R is defined as R =
√

(x− ξ)2 + (y − η)2, and J0(·) denotes the zeroth-order Bessel function of the
first kind. On the cylindrical surface with a unit radius, the velocity potential Φ and its normal derivative
Φn are expanded into the Fourier-Laguerre series:

Φ =

∞∑
m=0

∞∑
n=−∞

φmn(τ)Lm(−ζ)einϕ and Ψ = Φn =

∞∑
m=0

∞∑
n=−∞

ψmn(τ)Lm(−ζ)einϕ (4)

where the m−order Laguerre function Lm(v) is defined in [3]. By constructing the boundary integral
equation (1) on the cylinder surface in the sense of Galerkin collocation via integrating a test function
Lj(−z)e−i`ϕ over the cylinder surface, we have the following expression [1]:

φj`(t) +

M∑
m=0

φm`(t)H0
j`,m` =

M∑
m=0

ψm`(t)G0j`,m` +

M∑
m=0

∫ t

0

{
ψm`(τ)GCj`,m` − φm`(τ)HCj`,m`

}
dτ (5)

where G0j`,m`, H0
j`,m`, GCj`,m`, HCj`,m` are five-fold integrals. By applying the orthogonal properties of the

Fourier series and Laguerre functions, they can be simplified to single integrals:

{G0j`,m`,H0
j`,m`} = 4

∫ ∞
0

[
(2k − 1)|m−j|−1

(2k + 1)|m−j|+1
(1− 2kδmj) +

(2k − 1)m+j

(2k + 1)m+j+2

]
J`(k){J`(k), kJ ′`(k)}dk (6)

{
GCj`,m`,HCj`,m`

}
= −8

∫ ∞
0

(2k − 1)m+j

(2k + 1)m+j+2

√
gkJ`(k)

{
J`(k), kJ ′`(k)

}
sin
[
(t− τ)

√
gk
]
dk (7)



The single integrals in (6) are independent of time. The single integrals in (7) are time-dependent and
very oscillatory because of products of dual Bessel functions and trigonometric function. Integrating along
the real axis is nearly impossible when the time parameter is large. It shall be integrated along an appropri-
ate path in the complex plane. The integrating path, on which the integrand is exponentially-decreasing,
can be determined approximately by analysing the phase function related to the time parameter in the
complex plane and the integral evaluation can be efficient and accurate.

2 Transient diffraction wave run-up and wave loads

The transient incoming waves with wavefront are generated by a harmonically oscillating flexible plate,
and then the velocity potential ΦI (ρ, θ, z, t) with respect to the reference of cylinder is written as [4]:

ΦI =
Ag

ω
ek0z sin (k0ρ cos θ + k0L) sin (ωt) +

2Agk0
ωπ

∫ ∞
0

ekz cos (kρ cos θ + kL)
ω

k2 − k20
sin (βt)

β
dk (8)

with β =
√
gk. The parameter L is the distance between the wavemaker and the cylinder centre.

According to the body boundary condition, the Fourier-Laguerre coefficients ψmn associated with
normal derivative of diffraction potential is written as:

ψmn(t) =
1

2π

∫ 0

−∞

∫ π

−π
ΦD
n Lm(−z)e−inϕdϕdz

= −Agk0
ω

(k − 1/2)m

(k + 1/2)m+1
sin (k0L+ nπ/2)J ′n(k0) sin (ωt)

− 2Agk0
π

∫ ∞
0

(k − 1/2)m

(k + 1/2)m+1

k

k2 − k20
cos (kL+ nπ/2)J ′n(k)

sin (βt)

β
dk

(9)

The Fourier-Laguerre coefficients φmn(t) are obtained by solving the linear equation system (5). Then,
the velocity potential distribution over the cylinder surface is obtained by using (4). Therefore, we can
get the wave run-up on the cylinder and the wave excitation force acting on the cylinder.

The wave run-up on the cylinder η non-dimensionalized by the wave amplitude A consists of incoming
waves ηI and diffracted waves ηD:

η = ηI + ηD with {ηI , ηD} = − 1

Ag

{
ΦI
t ,Φ

D
t

}∣∣
z=0

(10)

where ηI and ηD are given by:

ηI = − sin (k0 cos θ + k0L) cos (ωt)− 2k0
π

∫ ∞
0

cos (k cos θ + kL)
1

k2 − k20
cos (βt)dk (11a)

and
ηD = − 1

Ag

∂

∂t

∞∑
m=0

∞∑
n=−∞

φmn(t)einϕ = − 1

Ag

∂

∂t

∞∑
m=0

∞∑
n=0

εnφmn(t) cos (nϕ) (11b)

with ε0 = 1 and εn = 2 for n > 0.
For the wave excitation force exerting on the cylinder, the non-dimensional form Fx with respect to

ρgA is expressed as:

Fx = F Ix + FDx with {F Ix , FDx } =
1

gA

∫ 0

−∞

∫ π

−π
{ΦI

t ,Φ
D
t } cosϕdϕdz (12)

where F Ix and FDx are given by:

F Ix =
2π

k0
J1(k0) cos(k0L) cos(ωt)− 4k0

∫ ∞
0

J1(k) sin(kL) cos(βt)

k(k2 − k20)
dk (13a)

and
FDx =

4π

gA

∂

∂t

∞∑
m=0

(−1)mφm1(t) (13b)

from which it can be seen that only φm1 makes contribution to the diffraction wave load FDx .



3 Analytical formulations

Analytical diffraction potential ΦD(P, t) at a flow-field point P and time t can be decomposed into
instantaneous and memorial terms:

ΦD(P, t) =

∫∫
C

Ψ(P,Q)v(Q, t)dS +

∫ t

0
dτ

∫∫
C
v(Q, τ)χ(P,Q, t− τ)dS (14)

where v(Q, t) = −∂ΦI/∂r is the normal velocity on the cylinder surface associated with incoming waves.
The fundamental solutions Ψ and χ are respectively instantaneous and memorial components of the
potential due to an impulsive source distribution on the cylinder surface. More details for the analytical
solutions of Ψ and χ in infinite waterdepth and corresponding diffraction force formulations can be found
in [5]. The wave run-up ηD contributed from diffraction potential ΦD is expressed as:

ηD = −
∞∑
n=0

εn cos (nθ) sin (k0L+ nπ/2)J ′n(k0)Pn(k0)

−2k0
π

∞∑
n=0

εn cos (nθ)

∫ ∞
0

cos (kL+ nπ/2)J ′n(k)
1

k2 − k20
Pn(k)dk

(15)

where Pn(k) and Fn(k) are respectively defined as:

Pn(k) = cos(βt)

[
−Re{Fn(k)}+

2k

π

∫ ∞
0

Im{Fn(k̂)}
k̂2 − k2

dk̂

]
+

2k

π

∫ ∞
0

cos(β̂t)− cos(βt)

k̂2 − k2
Im{Fn(k̂)}dk̂ (16a)

and

Fn(k) =
2H

(1)
n (k)

H
(1)
n−1(k)−H(1)

n+1(k)
(16b)

with H
(1)
n (·) being the Hankel function of the first kind with order n.

4 Results and discussions

The transient waves diffracted by a vertical cylinder have been given in [6] by using the classical frequency-
domain solution in [7] to substitute the propagating terms in the representation of transient incoming
waves. This method was extended to get the expression of transient diffraction potential and to evaluate
the diffraction loads.

Unlike that indirect time domain method, we use the Fourier-Laguerre spectral method to determine
φmn by inputing ψmn given by (9). In fact, only the terms for n = 1 are necessary to evaluate the
transient diffraction wave loads defined by (13b). The transient diffraction wave run up (11) and wave
loads (13) are evaluated for the frequency ω =

√
g and depicted on Figure 1 and Figure 2 respectively for

the distance L = 4π. More comparisons among results by using the method in [6], results by analytical
formulations and those by the Fourier-Laguerre spectral method will be presented in the workshop.
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Figure 1: Transient wave run up with the wave number k0 = 1 for θ = 0 on the left and θ = π on the
right, incoming part ηI by dashed line, diffraction part ηD by thin solid line and resultant wave run up
ηI + ηD by thick solid line.
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Figure 2: Transient wave loads for the distance L = 4π at the frequency ω =
√
g, by thin dashed line

for incoming wave part F Ix (13a), by thin solid line for diffraction part FDx (13b), by thick solid line for
the excitation load Fx (12) and by thick dashed line for the diffraction part obtained from analytical
formulations.
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