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Highlights
1. The Green function is analytically integrated over a smooth surface and a closed waterline using the

Fourier-Laguerre spectral method.

2. By measuring condition numbers of coefficient matrices, the Neumann-Kelvin theory is ill-posed, since
the condition number is up to O(106). In contrast, the Neumann-Michell theory is well-behaved with a
condition number in the order of 102.

3. The complete form of the boundary integral equation for the Neumann-Michell theory accounting for the
local component of the waterline integral is given, and the waterline integral and hull surface integral in
the modified Neumann-Kelvin theory are partially cancelled out.

1 Statement of the problem
A Cartesian coordinate system OXY Z is defined with the positive X−axis pointing to upstream and Z−axis

orienting upward, and it travels at a constant speed U with the cylinder along the positive X−axis. In this
frame of reference, the problem is defined as an incoming uniform flow with the velocity U in the direction of
negative X−axis. The reference length L and gravitational acceleration g are used to define non-dimensional
coordinates x = (x, y, z), velocity components u = (u, v, w) and velocity potential Φ with respect to L,

√
gL

and
√
gL3, respectively. The Froude number is defined as F = U/

√
gL. The total potential in the fluid domain

is decomposed into Φ = F (−x+ φ). On the hull surface ΣH , the body boundary condition is satisfied:

φn = nx on ΣH (1)

where the normal vector n = (nx, ny, nz) is defined positively pointing into the fluid domain. On the mean free
surface ΣF , the Kelvin-Michell free-surface boundary condition is satisfied:

F 2φxx + φz = 0 at z = 0 (2)

The free-surface Green function for the steadily translating problem satisfying the free-surface condition (2)
is: G = R + F where R and F denote the Rankine term and free-surface term defined as [1]:

R (x, ξ) =
1

4π

(
−1

r
+

1

r′

)
and F (x, ξ) =

1

4π2
<
∫ π

−π

∫ ∞
0

κeκ(z+ζ)−iκ[(x−ξ) cos θ+(y−η) sin θ]

F 2κ2 cos2 θ − κ
dκdθ (3)

where ξ = (ξ, η, ζ) and x = (x, y, z) denote the source point and flow-field point. Several alternative methods to
efficiently and accurately evaluate F are reviewed in [2]. Here, we introduce a new method [3] which is suitable
for the spatial integration. The free-surface term F is expanded into:

F =
1

4π2
<

∞∑
`=−∞

(−i)
`
e−i`ϕ

∫ ∞
0

eκ(z+ζ)J` (κh) g` (κ) dκ with g` (κ) =

∫ π

−π

ei`θdθ

F 2κ cos2 θ − 1
(4)

By using Cauchy’s theorem of residue, the integral with respect to θ can be analytically expressed [3]. The
analytical expression is well-behaved and not oscillatory with κ. For a large κ, the asymptotic representation
of g` (κ) is:

ĝ` (κ) = −2` (−i)
`
π

F 2κ

(
1− `2 − 1

6

1

F 2κ

)
+O

(
κ−3

)
(5)

2 Boundary integral equations for different flow models

2.1 Neumann-Kelvin theory

We apply Green’s identity in the fluid domain bounded by the hull surface ΣH free surface ΣF and the
surface at infinity Σ∞. The integral over the surface Σ∞ is null due to the radiation condition. By applying
the Kelvin-Michell free-surface condition, the free surface integral is reduced to a waterline integral using the
Stokes’ theorem. Then, we obtain the boundary integral equation for the Neumann-Kelvin (NK) theory [4, 5]:

φ =

∫∫
ΣH

(Gnξ − φGn) dS − F 2

∮
Γ

(Gφξ − φGξ)nξ
/√

n2
ξ + n2

ηdL (6)

where Γ stands for the waterline intersected by the cylindrical surface ΣH and free surface ΣF .



2.2 Modified Neumann-Kelvin theory

In the work by Noblesse et al [6], the component between the mean free surface and the actual free surface
is accounted for in the source term, and it is written as:∫∫

ΣH
a

GnξdS ≈
∫∫

ΣH

GnξdS + F 2

∮
Γ

Gφξnξ
/√

n2
ξ + n2

ηdL (7)

The waterline integral in (7) and the one in (6) can be cancelled out. Therefore, we obtain a new boundary
integral equation with the waterline integral component associated with φξ removed:

φ =

∫∫
ΣH

(Gnξ − φGn) dS + F 2

∮
Γ

φGξnξ
/√

n2
ξ + n2

ηdL (8)

This is refered to as the modified Neumann-Kelvin (mNK) theory. In contrast to the boundary integral
equation for the NK theory given by (6), the waterline integral does not include the term associated with the
spatial derivative of velocity potential, and is simplified to some extent.

2.3 Neumann-Michell theory

In the mNK theory, the term associated with φξ in the waterline integral is removed, but it still requires the
integration of the Green function along the waterline. Then, we follow the work by Noblesse et al [6] to further
eliminate the waterline integral which is referred to as the Neumann-Michell (NM) theory. However, different
from [6], the local component in the waterline integral is retained. We introduce a vector function F satisfying:

∇× F = ∇F with F =
(

0,F ξ
ζ ,−F ξ

η

)
(9)

where the subscript means differentiation while the superscript represents integration. If the vector function F
and the scalar function F satisfy the relation (9), the integral of n · [∇× (φF )] over a closed surface Σ is null.
Then, we obtain the boundary integral equation for the NM theory which is expressed as:

φ (x) =

∫∫
ΣH

[Gnξ − φRn + (n×∇φ) · F ] dS −
∮

Γ

Rξ
ζφnξ

/√
n2
ξ + n2

ηdL (10)

In the formulation (10), the waterline integral is only associated with the Rankine term R, and the waterline
integral of the free-surface term F is eliminated.

3 Fourier-Laguerre spectral method
To implement the boundary integral flow representations given in section 2, we study the wave-making

problem by a long vertical cylinder with a radius R. For the purpose of coping with the singular and highly-
oscillatory behaviours of the Green function properly, we analytically integrate the Green function over a smooth
boundary surface and a closed waterline. On the hull surface in the form of a circular cylinder ΣH , the velocity
potential and its normal derivative are expanded into a series of base function composed of the Laguerre function
in the vertical direction and Fourier series in circumference [7]:

φ (ϕ, ζ) =

∞∑
k=0

∞∑
l=−∞

φklLk (−sζ) eilϕ and
∂φ

∂n
(ϕ, ζ) = ψ (ϕ, ζ) =

∞∑
k=0

∞∑
l=−∞

ψklLk (−sζ) eilϕ (11)

via which the Green function is analytically integrated over a smooth surface and along a closed waterline. On
the waterline, the velocity potential and radial velocity component are consistent with the distribution over the
hull surface.

3.1 Fourier-Laguerre spectral method for the NK theory

To construct the boundary integral equation on the cylindrical surface, the collocation of the Galerkin type
is applied through integrating a test function in the form of Lm (−sz) e−inγ on both sides of the boundary
integral equation over the cylinder surface [7], and the resultant formulation is expressed as:

πφmn +

∞∑
k=0

∞∑
l=−∞

φklHHHmn,kl −
∞∑
k=0

∞∑
l=−∞

φklHHWmn,kl =

∞∑
k=0

∞∑
l=−∞

ψklGHHmn,kl −
∞∑
k=0

∞∑
l=−∞

ψklGHWmn,kl (12)

with

GHHmn,kl =

∫ 0

−∞

∫ π

−π

∫∫
ΣH

G (x, ξ)Lm (−sz)Lk (−sζ) e−inγeilϕdSdγdz (13a)

HHHmn,kl =

∫ 0

−∞

∫ π

−π

∫∫
ΣH

Gn (x, ξ)Lm (−sz)Lk (−sζ) e−inγeilϕdSdγdz (13b)



GHWmn,kl =
√
sF 2

∫ 0

−∞

∫ π

−π

∮
Γ

F (x, ξ)Lm (−sz) e−inγeilϕ cos2 ϕdsdγdz (13c)

HHWmn,kl =
√
sF 2

∫ 0

−∞

∫ π

−π

∮
Γ

[
il

R
F (x, ξ) sinϕ+ Fξ (x, ξ)

]
Lm (−sz) e−inγeilϕ cosϕdsdγdz (13d)

3.2 Fourier-Laguerre spectral method for the mNK theory

In the same manner, the boundary integral equation for the mNK theory constructed on the cylinder surface
is represented as:

πφmn +

∞∑
k=0

∞∑
l=−∞

φklH
HH
mn,kl −

∞∑
k=0

∞∑
l=−∞

φklH
HW
mn,kl =

∞∑
k=0

∞∑
l=−∞

ψklG
HH
mn,kl (14)

where H HH
mn,kl = HHHmn,kl, GHH

mn,kl = GHHmn,kl and H HW
mn,kl is expressed as:

H HW
mn,kl =

√
sF 2

∫ 0

−∞

∫ π

−π

∮
Γ

Fξ (x, ξ)Lm (−sz) e−inγeilϕ cosϕdsdγdz (15)

3.3 Fourier-Laguerre spectral method for the NM theory

Similarly, the boundary integral equation for the NM theory is expressed as:

πφmn +

∞∑
k=0

∞∑
l=−∞

φklHHHmn,kl −
∞∑
k=0

∞∑
l=−∞

φklHHWmn,kl =

∞∑
k=0

∞∑
l=−∞

ψklGHHmn,kl (16)

where GHHmn,kl = GHHmn,kl. In addition, HHHmn,kl and HHWmn,kl are expressed as:

HHHmn,kl = +

∫ 0

−∞

∫ π

−π

∫∫
ΣH

∂R (x, ξ)

∂nξ
Lm (−sz)Lk (−sζ) e−inγeilϕdSdγdz

− s
∫ 0

−∞

∫ π

−π

∫∫
ΣH

F ξ
ζ (x, ξ)Lm (−sz)L′k (−sζ) e−inγeilϕ cosϕdSdγdz

+
il

R

∫ 0

−∞

∫ π

−π

∫∫
ΣH

F ξ
η (x, ξ)Lm (−sz)Lk (−sζ) e−inγeilϕdSdγdz

(17a)

HHWmn,kl = −
√
s

∫ 0

−∞

∫ π

−π

∮
Γ

Rξ
ζ (x, ξ)Lm (−sz) e−inγeilϕ cosϕdsdγdz (17b)

3.4 Matrix-vector form

Subsections 3.1, 3.2 and 3.3 set forth the boundary integral equations based on the Fourier-Laguerre series
for the NK, mNK and NM flow models. Expressions (12), (14) and (16) can be concisely expressed as

[H] · {Φ} = [G] · {Ψ} = {B} (18)

Here, the vector {B} on the right-hand side of (18) is known according to the body boundary condition
(1). Therefore, the implementation of the Fourier-Laguerre series yields a linear equation system with Fourier-
Laguerre coefficients φkl as unknowns.

4 Discussions

4.1 Cancellation between hull surface integral and waterline integral

In subsection 2.3, the waterline integral is eliminated indicating that the waterline integral and hull surface
integral in the mNK theory are partially cancelled out. By using asymptotic expansions for g` (κ) and Jl (κR),
the integrand of H HH

mn,kl for a large argument κ can be expressed as:

Ĥ HH
mn,kl = − (l − n)

2πsR
F 2κ2

√
2

πκR
Jn (κR) cos

(
κR− l − 1

2
π − π

4

)
+O

(
κ−4

)
(19)

and then, the asymptotic expression of the integrand of H HW
mn,kl is expressed as:

Ĥ HΓ
mn,kl =− (l − n)

2πsR
F 2κ2

√
2

πκR
Jn (κR) cos

(
κR− l − 1

2
π − π

4

)
− 2πls

κ2

√
2

πκR
Jn (κR) sin

(
κR− l − 1

2
π − π

4

)
+O

(
κ−4

) (20)

Representation Ĥ HH
mn,kl is identical to the first expression in Ĥ HW

mn,kl which means that the hull surface integral
and waterline integral in the mNK theory are partially cancelled out. As F � 1, the first expression in (20)
plays a dominant role and the cancellation of the leading terms is more eminent, which is consistent with [8].



4.2 Condition numbers of coefficient matrices

The condition number of coefficient matrices is now considered. Due to the fact that the mNK theory is
mathematically equivalent to the NM theory, there are essentially two flow models. Figure 1 depicts condition
numbers of coefficient matrices [G] and [H] for NK and NM theories as a function of F . When F ≤ 0.2, condition
numbers for NK and NM theories are almost at the same order. When F > 0.3, the difference between NK and
NM theories is obvious. The condition numbers for the NK theory are very large, and matrices [G] and [H]
are in orders of 105 and 104, respectively, indicating that the NK theory yields singular coefficient matrices. In
contrast, condition numbers of matrices [G] and [H] for the NM theory are between 102 and 103. In addition,
they keep stable with F . Therefore, the NM theory is comparatively well-behaved, it is adopted to study the
wave-making problem by a vertical cylinder.
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Figure 1: Condition numbers of coefficient matrices [G] and [H] for NK theory and NM theories.

4.3 Wave-resistance of a translating cylinder

The wave-making by a translating vertical cylinder is now considered. According to the body boundary
condition ψ = nξ = cosϕ, the element of vector {B} for the mNK theory or NM theory is expressed as:

Bmn = R
∫ π

−π

∫ 0

−∞

∫ π

−π

∫ 0

−∞
G (x, ξ)Lm (−sz) e−inγ cosϕdζdϕdzdγ (21)

Solving the linear equation system given by (18) yields the Fourier-Laguerre coefficients φkl. We can get the
velocity potential distribution over the hull surface using (11), and then the wave resistance experienced by the
vertical cylinder based on Bernoulli’s equation is given by:

d = 2π
∑
k

(−1)
k

√
s

(φk,−2 + φk,2) +
πR
2

∑
m

∑
n

∑
k

∑
l

δn+l,±1φmnφkl

{
δm,k

(
nl

R2
+
s2

4

)
− s2

[
1

2
+ min (m, k)

]}
(22)

Application of the Fourier-Laguerre spectral method yields a very simple expression for the wave resistance
given by (22). Results of wave resistance as well as generated wave patterns will be presented at the workshop.
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