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Interaction of hydroelastic waves in ice cover with vertical walls
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The linear three-dimensional problem of uni-directional hydroelastic wave propagating in an infinite
ice cover towards a vertical cylinder of an arbitrary cross section Γ in water of finite depth H, see
figure 1, is solved by the vertical mode method. In two-dimensional problems of hydroelastic waves
reflected from a vertical wall this method was used in [1]. Other methods to study both 2D and
3D problems of hydroelastic waves and their interactions with vertical structures were developed in
[2-4]. It was noted in [5] than the eigenfunctions, which represent the vertical modes of the liquid
flow between the flat sea bottom and a floating elastic ice sheet, are non-orthogonal in a standard
sense and could be incomplete. The two-dimensional scattering problem for a crack was solved by
a Green’ function approach (see [5], section 3) and then by the eigenfunction expansion method
(see [5], section 4), which is equivalent to the present method of vertical modes. It was reported
in [9] that the vertical mode method is much simpler to use, and it also gives useful details of the
ice deflection and the flow beneath the ice. However, to validate this mode solution, they solve
the same problem by another method and demonstrated that these two solutions are identical. We
followed the same idea and proved that the solutions of the problem for a vertical circular cylinder
by the vertical mode method and by the method based on the Weber integral transform in the
radial coordinate [3] are identical. In the present study, we generalize the method of vertical modes
to any geometry of vertical walls. However, numerical results are still only for circular cylinders.

The vertical modes of ice sheet of constant thickness floating on water of finite depth were
introduced in [6] and were successfully applied to two-dimensional problems of hydroelasticity
without vertical boundaries in several papers.

Fig. 1 Sketch of the problem and main notations.

Formulation of the problem

The flow and ice deflection are caused by an incident hydroelastic wave,

winc(x̃, t̃) = A cos (kx̃− ωt̃), (1)

propagating in the positive x-direction, see figure 1, where A is the amplitude of the incident wave,
k is the wavenumber and ω is the wave frequency. Here real and positive ω and k are related by



the dispersion equation of hydroelastic waves. The linear problem of the incident hydroelastic wave
interacting with a vertical bottom-mounted cylinder is formulated in non-dimensional variables
(without .̃). The water depth H is taken as the length scale, 1/ω as the time scale, A is the scale
of the deflections and AHω is the scale of the velocity potential of the flow. The ice deflection,
w(x, y, t), and the velocity potential, φ(x, y, z, t), are periodic in time,

w = <(W (x, y)e−it), φ = <(Φ(x, y, z)e−it). (2)

The complex potential Φ(x, y, z) satisfies the Laplace equation,

∇2Φ + Φzz = 0, ∇2Φ = Φxx + Φyy, (3)

in the flow region, −1 < z < 0, (x, y) ∈ D. The plane z = −1 corresponds to the flat rigid
bottom and the plane z = 0 corresponds to the ice-fluid interface. The potential Φ satisfies also
the following boundary conditions,

Φz = 0 (z = −1, D),
∂Φ

∂n
= 0 (−1 < z < 0, Γ), Φz = W (z = 0, D). (4)

The equation of thin ice plate can be written in the form [14]

∂5Φ

∂z5
+ δ

∂Φ

∂z
= qΦ (z = 0, (x, y) ∈ D), (5)

where q = (ω2H/g)(H/Lc)
4, δ = (1− ω2/ω2

0)(H/Lc)
4, Lc = (Di/ρg)1/4 is the characteristic length

of the ice sheet, ω0 = (ρg/m)1/2 is the frequency of floating broken ice, m is the mass of the
ice cover per unit area, m = ρihi, hi is the ice thickness, ρi is the ice density, Di is the rigidity
coefficient of the ice sheet, Di = Eih

3
i /[12(1 − ν2)] for an elastic plate of constant thickness, Ei is

the Young module of the ice, ν is the Poisson ratio, ρ is the water density and g is the gravitational
acceleration. The condition at infinity follows from (1):

W ∼ eiæx (x→ −∞), (6)
where æ = kH is the non-dimensional wavenumber. The condition (6) is imposed where x2 + y2 →
∞ if the vertical walls Γ do not extend to infinity. The three dimensionless parameters, δ, q and
æ, are related by the dispersion relation

(æ4 + δ) æ tanh (æ)− q = 0. (7)

The conditions at the contact line, z = 0 and (x, y) ∈ Γ, between the ice cover and the surface
of the cylinder can be complicated in practical problems. The present method is not sensitive to
the type of these conditions. The method is demonstrated here for the ice cover being frozen to
the vertical cylinder, which is modelled by the clamped conditions,

W = 0,
∂W

∂n
= 0 ((x, y) ∈ Γ). (8)

Vertical mode method

By the method of separating variables, a product Φ(x, y, z) = Wn(x, y)fn(z) satisfies equation
(3) and the boundary conditions on the bottom (41) and the ice-water interface (5), if fn(z) is a
nontrivial solution of the following spectral problem:

f ′′n − æ2
nfn = 0 (−1 < z < 0),

dfn
dz

(−1) = 0,
d5fn
dz5

+ δ
dfn
dz

= qfn(0), (9)

where æn is a root of the dispersion relation (7), n = −2,−1, 0, 1, ..., æ0 = æ, and Wn(x, y) is a
solution of the equation

∇2Wn + æ2
nWn = 0 ((x, y) ∈ D). (10)



The functions fn(z) normalised by the condition f ′(0) = 1 are fn(z) = cosh[æn(z+1)]/(æn sinh[æn]).
The vertical modes are orthogonal, <fj , fn>= 0, <fn, fn>= Qn, where j 6= n and the scalar prod-
uct of two functions F (z) and G(z) defined in the interval −1 ≤ z ≤ 0, is

<F,G>=

∫ 0

−1
F (z)G(z)dz +

1

q
(F ′′′(0)G′(0) + F ′(0)G′′′(0)). (11)

By algebra, Qn = (æ2
n(æ4

n+δ)2 +q(5æ4
n+δ−q))/(2æ2

nq
2). For the imaginary roots of the dispersion

relation, æn = iµn, where µn > 0 and n ≥ 1, we have µn = πn − q(πn)−5 + O(n−6) as n → ∞.
Therefore, Qn = O(n8) as n→∞. The conditions at infinity for equations (10) are

W0 ∼ eiæx, Wn → 0 (x→ −∞), (13)

The solution of the original problem is given by the series

Φ(x, y, z)) =
∞∑

n=−2

Wn(x, y)fn(z), W (x, y) =
∞∑

n=−2

Wn(x, y). (14)

The boundary condition for (10) are derived in local coordinates (s, n), where n = 0 on the vertical
wall Γ and s is a curvilinear coordinate along the wall. By definition,

lim
n→0

<
∂Φ

∂n
(x, y, z), fk(z)>=

∞∑
n=−2

∂Wn

∂n
<fn, fk>=

∂Wk

∂n
(s)Qk,

on the other hand the limit is equal to

lim
n→0

[∫ 0

−1

∂Φm

∂n
(x, y, z)fk(z)dz +

1

q

(
∂3

∂z3

(
∂Φ

∂n

)
(x, y, 0)f ′k(0) +

∂

∂z

(
∂Φ

∂n

)
(x, y, z)f ′′′k (0)

)]
,

where the limit of the integral is zero. The boundary condition is

∂Wk

∂n
(s) =

Q(s)

qQk
+

æ2
k

qQk

∂W

∂n
(s), (15)

where the functions Q(s) and (∂W/∂n)(s) are defined along the contact line between the ice and
the vertical walls, Q(s) is the shear force with the scale DiAH

−3 and ∂W/∂n(s) is the slope of the
ice plate at the vertical wall. The functions Q(s) and (∂W/∂n)(s) are to be determined by using
the conditions at the contact line.

For clamped conditions, (∂W/∂n)(s) = 0 and

Q(s) =
∞∑

m=0

µmgm(s), Wk(s) = (qQk)−1
∞∑

m=0

∞∑
p=0

µmC
mp
k gp(s)

∫
Γ
gm(s)gj(s)ds = δmj ,

where gm(s) make a complete set of functions along the contact line, W0(s) = W0d(s) + W0r(s),
where W0r is the radiation part of the deflection. The clamped condition, W (s) = 0 gives the
following algebraic system with a symmetric matrix for unknown coefficients µm, where p ≥ 0,

∞∑
m=0

µm

( ∞∑
n=−2

(qQn)−1Cmp
n

)
= −

∫
Γ
W0d(s)gp(s)ds. (16)

Other conditions at the contact line are treated in a similar way.
For a circular cylinder, s is the angular coordinate, 0 ≤ s < 2π, gm(s) = νm cos(s), Cmp

n = 0 for
m 6= p and

Cmm
n =

H
(1)
m (ænB)

ænH
(1)
m
′(ænB)

,



where B = b/H is the non-dimensional radius of the cylinder.
The strain distribution around the cylinder in an incident wave is important to estimate possibil-

ity for ice to be broken due to the wave-structure interaction. The yield strain for ice is estimated as
8×10−5, see [4]. On the contact line of the cylinder frozen in ice, only the radial strain component,
εr(s, t) = 0.5hiwrr(b, s, t), is not equal to zero. The amplitude of the radial strain as a function of
the polar angle θ is shown in Figure 2 for a circular cylinder of radius 5 m, wave amplitude of 1 cm
and different wave length It is seen that the incident wave of amplitude 1 cm and length 67 meters
is strong enough to break the ice connection to the cylinder.

Fig. 2 Radial strains at the contact line in polar coordinates for kH = 0.1, 0.5, 1.0, 1.2, 1.38
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