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1 Introduction

Shock waves are non stationnary wave trains characterized by a localized steep gradient across the shock
front. This steep gradient is commonly named gradient catastrophe and it is the main mechanism of shock
formation [1]. In classical shock wave, dissipation plays a role as regulation mechanism. A di�erent type
of shock wave is the dispersive shock waves (DSW) that are also non-stationary wave trains that form
spontaneously in weakly dispersive media [2]. It corresponds to a sharp soliton front connected to a rapidly
varying oscillatory wave with structure envelope. In this case, dispersion is the regularization mechanism.
These DSW are usually observed in shallow water and they are called undular bores [3][4][5]. Laboratory
investigations of undular bores was pioneered by Favre as early as 1935[6]. The considered waves correspond
to a positive elevation of the free surface. Recently Trillo et al. (2016)[7] performed experiments for a
negative elevation and found a very good agreement with the Korteweg�de Vries model.
DSW are also observed in various other media as optics, plasmas, super�uids, gas dynamics or Bose-Enstein
Condensate. The experimental observations of such waves was reported �rst in 1970 for plasma [8]. Recently
Fatome et al. (2014)[9] have shown experimentally and numerically for light propagation in optical �bers
that wave breaking leads to the observation of multiple optical dispersive shocks and their interaction under
di�erent for-wave mixing con�gurations.
In this paper, we report the results of an experimental campaign performed in a 200m wavetank with a
bathymetry that consists with two �at parts connected by a 1/20 slope. When breathers propagates over
this bottom, dispersive shock waves are observed that are very similar to those showed by Fatome et al.
(2014)[9].

2 Mathematical model

The mathematical model used to generate the modulated wave train is given by the NLSE. This equa-
tion describes the space-time evolution of the envelope amplitude A(x, t) of a weakly nonlinear wave train
propagating in various media. In arbitrary depth this equation is given by:
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where cg is the group velocity, α the dispersion coe�cient and β the nonlinearity coe�cient (see [10] for
details). This equation can be rewritten in a non dimensional form given by:
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In the coordinate system (ξ, τ) propagating at the group velocity, a �rst order solution of this equation is
given by Akhmediev [?]:
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The parameter a is the breather parameter. The envelope period is function of this parameter and the initial
amplitude of the wave train a0.

3 Experimental setup

These experiments were conducted at the Tainan Hydraulics Laboratory (THL) of the National ChengKung
University in Taiwan in the basin called "Mid-size Observation Flume". The length of the basin is 200m,
the width is 2m and the water depth was �xed to h0=1.3m. One end of the basin is equipped with a piston
wavemaker. The bathymetry consists in a constant part of 35m, a 1/20 slope over 20m and again a constant
part beyond. With the initial water depth set to 1.3m, the water depth over the second constant part is
0.3m.
To measure the evolution of the free surface, 30 capacitive wave gauges were installed, distributed from 3 to
168.6m. A drawing of the experimental setup with the bathymetry and the wave gauges location is given in
�gure 1.

Figure 1: Drawing of the experimental setup with the bathymetry and the wave gauges location.

The experimental conditions correspond to di�erent initial k0h0 and a0k0, with k0 the wavenumber. Two
di�erent breathers are considered, An Akhmediev breather with a=0.25 and a focusing distance equal to to
the edge of the slope at x=55m and a Peregrine breather that corresponds to the limit a=0.5, with the same
focusing distance.

4 Results

4.1 Equation

To compare our results with a numerical code, a NLSE equation in variable bathymetry is considered. This
equation was �rst developed by Djordjevic and Redekoop (1978)[11]. The following equation is the same as
for the cited authors but with an adding term to take into account the linear dissipation:
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and σ the dissipation rate. This equation is solved with an usual split-step method.



4.2 A generic example: the Peregrine Breather

In �gure 2 the space-time evolution of the envelopes of a Peregrine breather are displayed. The left �gure
corresponds to the experimental data and the right to the numerical results. Parameters for this case are
a=0.5, T0=1.2s, h0=1.3m and a0k0=0.11, with T0 the wave period. The space evolution of the maximum of
the normalized envelope is also displayed in �gure 3-left. As the wave group reaches the slope, the amplitude
of the envelope increases up to the focusing point on the upper edge of the slope and then decreases gradually
to the end of the wavetank. The decreases of the envelope is mainly due to the defocusing of the wave group
but also due to dissipation that occurs on the frames of the wavetank. This dissipation is known to play in
important role on the stability of the wave groups [12][13]. Values of the dissipation rate σ function of the
wave period T0 are computed from previous experiments. When the wave group reaches the upper edge of
the slope, waves experience a high gradient that lead to the generation of dispersive shock waves (DSW).
This DSW appears as oscillations of the envelope in both sides of the maximum. In �gure 3-right the time
evolution of the envelopes are displayed for two di�erent distances, one before the slope (10.5m from the
wavemaker) and after the edge (128.8m from the wavemaker).

Figure 2: Space-time evolution of the amplitude of the envelope for a Peregrine Breather case with a=0.5, T0=1.2s, h0=1.3m
and a0k0=0.11. (Left) Experimental, (Right) Numeric.

Figure 3: (Left) Comparison of the maxima of the normalized envelope for the experiments (solid blue line and circles) and
for the code (red). The bottom pro�le is also displayed. (Right) comparison of the time evolution of the envelope for 2 distances
from the wavemaker. (Solid lines): experiment, (Dashed lines): numeric.

On this �gure, the oscillation are clearly visible and the comparisons with the numerical model are reasonably
good. However some di�erences are visible. First evolution of the maximum which is symmetric on the model



is asymmetric in the experiments and second the propagation of the shock in the left side of the maxima is
not well modelized. These di�erences might be due to higher dispersion or non linearity e�ects.
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