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1 Introduction

Very long upstream waves may be generated when a ship passes over a depth change. The mech-
anism is found to happen in restricted waters. The waves may however propagate regardless of
the water depth, once they are generated. This generation mechanism has been observed for both
large and small ships moving at subcritical and supercritical speed, where criticality refers to the
shallow water speed at the location. The subcritical generation of the waves has been taking place
ever since the modern and very large cruiseferries were introduced the Oslofjord in Norway from
2004 and onwards. A strong forward speed effect has been found where the wave amplitude grows
according to the ship speed in a power in the range ∼ 3 − 4. A wave height along the shore line
of up to 1.4 m has been measured. The 0.5-1 km long waves contribute to a new erosion that
is modifying the approximately 40 m deep (on the average) fjord. Marinas as well as piers and
small houses on the shore are experiencing a new damage. A first description of the phenomenon
is presented in Grue (2017) including observations, mathematical analysis and numerical results.
The effect of the ship was represented by a pressure distribution.

In the present contribution we study the generation mechanism in a novel detail including its
interpretation. We also model a proper ship geometry.

2 Theory

Let (x1, x2) denote horizontal coordinates and y the vertical coordinate with y = 0 in the mean
free surface. Let t denote time, U forward speed of the ship (along the x1-direction) and g the
acceleration of gravity. The bottom is given by y = −h + β(x1, x2) where β = ∆h(1 + tanhx1)/2
gives the depth change.

The potential along the bottom and free surface is connected to the normal velocity along the
free surface through the solution of the Laplace equation. The leading, dominant contribution to
this solution is obtained by (see Grue, 2017, Section 3)

F(V ) =
ω2

g
F(φF ) + F(V1), F(V1) =

ik

cosh kh
· F(β∇1φB), (1)

where V = (∂φ/∂y)y=0, ω
2 = gk tanh kh, φF denotes the velocity potential at the surface, φB the

velocity potential along the bottom, ∇1 horizontal gradient, β(x) the depth profile, V1 the effect
of the depth change, F( ) Fourier transform, k the wave vector in Fourier space and k = |k|.

The waves are long and amplitude small which means that linear theory is applicable. The
linear free surface (kinematic and dynamic) boundary conditions read in their Fourier transformed
versions:

∂F(η)

∂t
− ω2F(φF ) = F(V1),

∂F(φF )

∂t
+ gF(η) = 0. (2)

Eqs. (2a,b) may be integrated expressing the free surface elevation by the Fourier transformed
vertical velocity, F(V1), by

F(η) =

∫ t

t0

cosω(t− s)F(V1)(s)ds, (3)
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where t0 denotes the time before the interaction with the depth change. The wave field is obtained
by inverse transform of (3). The wave field may be obtained once the vertical velocity given by
(1b) is obtained. This requires obtaining of the bottom potential φB.

3 Analysis of a small depth change

In what follows we assume the four simplifications: 1. the depth change is small (∆h/h << 1); 2.
the potential along the bottom caused by the moving ship, after the depth change, is approximated
by the potential before the depth change (where the correction from the depth change is assumed
small compared to the ’incoming’ ship generated potential); 3. the Froude number based on the
ship length is assumed to be small, justifying the rigid lid condition at the surface (before the
encounter with the depth change); 4. the back coupling effect by the body is disregarded.

Dipole representation. For illustrative purposes the ship geometry is first represented by a
dipole, where a sum of images means that the rigid lid condition is satisfied at the mean free
surface at y = 0 and along the bottom located at y = −h. The potential of a dipole located in
x1 = 0, x2 = 0, moving with speed U , is obtained by

φ(x1, x2, y) = UA
∂

∂x1

∞
∑

n=−∞

1

rn
, (4)

where U is the forward speed and r2n = x21 + x22 + (y + 2nh)2. The dipole moment is given by
A = (2V + 2a11)/(4π) where V and a11 denote the displaced volume and added mass of the body,
respectively. The factor of 2 appears because of the double body approximation. The added mass
a11 of the slender ship is small compared to the volume. The value of the potential at y = −h is
obtained by

φB = 2UA
∂

∂x1

∞
∑

n=1

1

Rn
, (5)

where R2
n = x21 + x22 + (2n− 1)2h2. Figure 1a illustrates the vertical velocity V1 in (1b) caused by

the dipole located in (x1, x2) = (0, 0) moving along the new depth of h−∆h. The vertical velocity
is divided by A∗ = (V + a11)/h

3. The dipole causes a positive vertical velocity at its forward
(positive) pole and a negative vertical velocity at its backward (negative) pole. The vertical velocity
is antisymmetrical in the motion direction and symmetrical in the lateral direction. Figures 1c and
1d illustrate the upstream elevation caused by the dipole moving across a depth change at x1 = 0.
The speed is U/

√
gh = 0.5 and the time t = 10

√

g/h, clocked after the depth change, where in the
figure the dipole is temporarily at x1/h = 5. The substantial depression below the dipole does not
contribute to the upstream wave elevation. The periodic domain is (L1, L2) = (160h, 20h).

Ship geometry. Assuming that the ship geometry is given by y = δ(x1, x2) it may be shown
that the velocity potential given by the moving ship reads

kF(φ(y)) =
cosh k(y + h)

sinh kh

(

F(WF ) + ik · F(δ∇1φF )
)

, (6)

k tanh khF(φF ) = F(WF ) + ik · F(δ∇1φF ) + k tanh khF(δWF ), (7)

where WF = (∂φ/∂n)
√

1 + |∇δ|2 = −U i · ∇δ = −Uδx1
. The normal vector is pointing out

of the fluid. The former equation (6) determines F(φ) below the geometry (valid for y < δ).
The latter equation (7) determines F(φF ) along the free surface and the ship geometry. In the
computations the ship geometry is given by δ(x1, x2) = −d0(1 − (2x1/l)

12 − (2x2/w)
6) where
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(l, w, d0) denotes (length, width, draught). In the computations, l/h = 15, w/h = 2.5, d0/h = 0.5,
and (L1, L2) = (160h, 20h).

The evaluation of the vertical velocity V1 due to the elongated ship moving along the new depth
h−∆h exhibits a localized upward contribution at the bow and a similar negative contribution at
the aft (figure 1b) where the mid position of the ship is at x1 = x1,0 and x2 = 0. The contributions
are distributed in the form of two cones, of width similar to the width of the ship. They both emerge
when the bow or aft are passing by the depth change. The Fourier transform of the contribution
from the bow may be approximated by

F(V1,bow) =

∫ ∞

−∞
dx2

∫ ∞

−∞
dx1V1,bow(x1, x2)e

−ik1x1−ik2x2 ≃ V0e
−ik1x1,bH(x1,b), (8)

where V0 denotes the integrated velocity of the velocity cone, x1,b the x1-coordinate of the center
of gravity of the velocity cone and H the Heaviside function. The contribution from the aft is
obtained similarly by

F(V1,aft) =

∫ ∞

−∞
dx2

∫ ∞

−∞
dx1V1,aft(x1, x2)e

−ik1x1−ik2x2 ≃ −V0e
−ik1x1,aH(x1,a), (9)

where x1,a ≃ −x1,b denotes the x1-coordinate of the center of gravity of the velocity cone at the
aft. The distance x1,b − x1,a is slightly shorter than the ship length. The effect of the velocity cone
at the stern appears at a time (x1,b − x1,a)/U earlier than at the aft.

The convolution (3) may be evaluated for a relatively narrow model channel of width L2 where
the wave the motion is averaged across the channel. The time dependencies of x1,b and x1,a are ac-
counted for. The following asymptotic upstream elevation may be obtained: η/[α̃V(∆h/h2)/L2] ∼
(Ai(Z)/[(1 − Fr)(4c0t/h)

1/3] where Ai denotes the Airy function, Z = (x1 − c0t)/(c0h
2t)1/3 and

c0 =
√
gh. The coefficient α̃ is very close to unity. The asymptotic elevation is plotted in figure

1e for t
√

g/h = 40 and Fr = 0.5. The asymptotic wave amplitude grows according to 1/(1− Fr)
and becomes singular at Fr = 1. Note that the linear theory outlined here is not valid in the
transcritical regime.

Interpretation. We note that the vertical velocity V1 in (1) may be rewritten by

F(V1) =
ik

cosh kh
· F(β∇1φB) ≃ F(∇1β · ∇1φB + β∇2

1φB) ≃ F
(

(∇1β − j) · (grad φ)y=β

)

, (10)

(assuming kh << 1) where the velocity V1 counteracts the ship-induced normal velocity of the
fluid, at y = −h+ β, such that the sum is zero at the new depth. This results in a corresponding
vertical velocity at the surface which generates the upstream tsunami. At the bow, the ship induced
vertical velocity is negative. If the depth reduces, this results in an upward flux at the position
of the bow, and an upstream elevation wave. The vertical velocity takes the opposite direction at
the aft. If the depth increases, the downward velocity at the ship bow leads to a negative leading
upstream wave.

Finally we note that the Fourier transform of the normal velocity WF induced by the ship,
defined below (7), yields contributions at the bow and the aft, both proportional to the ship’s
sectional area, separated by a distance corresponding to the ship length. This shows that the ship
generated waves are proportional to the volume of the ship.

Reference.
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Figure 1: a) V1×102

A∗∆h/h
√
gh

for a dipole. b) V1×102

∆h/h
√
gh

for a ship (with V/h3 = 13.1). c) Elevation
η

A∗∆h × 102 for the dipole running at U/
√
gh = 0.5 across a depth change at x1 = 0, at time

t = 10
√

h/g after the depth change. d) Same as b) but section along x2 = 0. e) Upstream elevation
due to a ship in a channel of width L2. t

√

g/h = 40, Fr = 0.5, and coeff = α̃V(∆h/h2)/L2.
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