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Highlights
• Development of the SWENSE method within a monophasic weakly-compressible Navier-Stokes solver.

• Application of the SWENSE method to a fixed cylinder in a regular wave field.

Introduction
Naval or ocean engineering hydrodynamic problems are usually solved using either potential flow assumption or the full Navier-
Stokes equations. Potential flow solvers provide very fast and accurate results for propagating gravity waves, but cannot describe
the interaction of these waves with structures when viscosity/turbulence play a significant role. On the contrary, Computational
Fluid Dynamics (CFD) solvers can accurately predict fluid/structure interactions but are not fully adapted to wave propagation
cases because of their inherent numerical diffusion.

The purpose of this work is to combine the advantages of potential flow and CFD solutions through the use of a hybrid
SWENSE (Spectral Wave Explicit Navier-Stokes Equations) method. The essence of this method is to pre-calculate the incident
flow (waves and/or currents) through a potential flow spectral solver and to insert it within the Navier-Stokes equations to get the
SWENSE equations. As a result, only the disturbed flow solution is computed. This kind of hybridization was first introduced in
[4] and then extended in [5, 12, 14, 16].

The disturbed flow (diffracted + radiated + viscous + turbulent) is mainly located in the structure vicinity. Thus, only the
near-structure area needs a fine spatial resolution, saving large computational time and making the SWENSE formalism very
attractive. An alternative to the SWENSE method is to directly force wave boundary conditions at the boundary of a reduced
Navier-Stokes domain as presented for instance in [15]. Such a one-way coupled method is interesting because of its relative
simplicity. Nevertheless, it presents some drawbacks: the wave propagation is more difficult to simulate accurately in the Navier-
Stokes domain and the method needs much larger refined computational domains.

In the present work we propose to extend the SWENSE method to an in-house Finite Volume Navier-Stokes solver based
on a weakly-compressible approach [2]. It is still under development and is already able to model viscous and turbulent flows
including complex moving geometries. A fully explicit temporal scheme combined with the weakly-compressible approach is
used and a purely Cartesian grid is adopted for numerical accuracy and algorithmic simplicity purposes. An Adaptive Mesh
Refinement (AMR) method embedded within a massively parallel framework is implemented and geometries are automatically
immersed within the Cartesian grid, preventing the need for complex pre-processing tools as needed in body-fitted strategies for
instance.

In the present context, the SWENSE method needs to be adapted to a weakly-compressible formulation of the Navier-
Stokes equations whereas it was only derived under the incompressible assumption in previous works [4, 5, 12, 14, 16]. As
for the incompressible version, only the disturbed solution needs to be finally computed, in addition to advection terms of the
disturbed solution along the imposed incident velocity, as presented in the first part of this paper. To our knowledge, such an
implementation of the SWENSE method within a weakly-compressible solver has never been proposed so that it represents both
a numerical challenge and an original topic. The final objective will be to impose the incident flow as a highly accurate wave
solution (Rienecker & Fenton [17], High Order Spectral (HOS) [3] possibly taking into account variable bathymetry as proposed
in [6]), so as to solve practical engineering problems. Nevertheless, for validations purposes, some very simple incident flows are
used in this paper in a first attempt: the propagation of an Airy wave past a cylinder is presented and comparisons are performed
with experimental and numerical results.

Numerical model

Weakly-compressible Navier-Stokes solver
The CFD solver used in this work aims at solving the following Navier-Stokes equations:

∂ρ

∂t
+∇.(ρu) = 0 , (1)

∂(ρ u)

∂t
+∇.(ρu⊗ u) = −∇p+ ρg + µ∇2u , (2)



where g, ρ, µ, p, u are respectively the gravity, density, dynamic viscosity, pressure and velocity. p is deduced from the following
Equation Of State (EOS) which depends exclusively on the density as:

p− p0 =
ρ0c
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γ

[(
ρ

ρ0

)γ
− 1

]
= EOS(ρ) , (3)

where p0 is a reference pressure taken here as p0 = 0. ρ0 is the nominal density, c0 is the nominal sound speed and γ is the
polytropic constant. The sound speed c0 should be chosen to fulfill the weakly-compressible assumption, as discussed in [2] [13].
In the following, the system (1)-(2) is decomposed into an hyperbolic part (Euler equations) and a viscous part. The hyperbolic
flux computation can be performed by using any exact or approached Riemann solver. The flux is computed from the left and
right states at each cell edge, these states being reconstructed from the surrounding cells values using either a MUSCL scheme
[10] or a WENO scheme [11, 19]. The viscous fluxes are computed by applying the method proposed in [1] (see [2] for more
details). The SWENSE method introduced hereafter excusively uses a 5th order WENO scheme for accuracy purposes.

SWENSE formalism proposed
Starting from the above formalism, the SWENSE method is derived as follows: first, the Navier-Stokes equations are re-written
with "total" variables. Then, the incident (undisturbed) flow part is subtracted from the total flow and some terms naturally vanish
since the incident field fulfills the mass and momentum conservation equations under the incompressible hypothesis.
Re-writing the Navier-Stokes equations with total variables leads to:

∂ρT
∂t

+∇.(ρTuT ) = 0 , (4)

∂(ρT uT )

∂t
+∇.(ρTuT ⊗ uT ) = −∇pT + ρT g + µ∇2uT , (5)

pT = EOS(ρT ) , (6)

where the total velocity field respects uT = uI + uD, in which subscripts T , I and D refer to the total, incident and disturbed
fields respectively. The incident flow is always taken as incompressible, inviscid and irrotational in the present work, so that:

ρI = ρ0 = cst , (7)

∇.(ρ0uI) = 0 , (8)
∂(ρ0 uI)

∂t
+∇.(ρ0uI ⊗ uI) = −∇pI + ρ0g . (9)

From Eq.(4-6) and Eq.(7-9), and noting uD = uT − uI and pD = pT − pI , we deduce:

∂ρT
∂t

+∇.(ρTuD) + uI .∇ρT = 0 , (10)

∂(ρTuD)

∂t
+∇. [ρTuD ⊗ uD] +∇. [ρTuD ⊗ uI ] +∇. [ρTuI ⊗ uD]

= −∂(uI(ρT − ρ0))

∂t
−∇. [(ρT − ρ0)uI ⊗ uI ] + (ρT − ρ0)g−∇pD + µ∇2uD , (11)

pD = EOS(ρT ), (12)

where∇2uI = 0 (∇× uI = 0 since we assumed an incident irrotational potential flow), and EOS(ρI) = EOS(ρ0) = 0.
Noting ∆ρ = ρT − ρ0, the term written in blue can be decomposed as:

− uI
∂∆ρ

∂t︸ ︷︷ ︸
(1)

−∆ρ
∂uI
∂t︸ ︷︷ ︸

(2)

−∆ρ∇. [uI ⊗ uI ]︸ ︷︷ ︸
(3)

− (uI ⊗ uI)∇. [∆ρ]︸ ︷︷ ︸
(4)

+ ∆ρg︸︷︷︸
(5)

(13)

In the weakly-compressible case (Ma < 0.1, see [2] for more details) the density remains very close to the nominal density
(∆ρ < 0.01), so that: ρT ' ρ0 ' ρD. We thus make the hypothesis that:

ρ = ρD = ρT = ρ0, (14)

so that all the terms in Eq.(13) vanish. The final set of equations can be approximated as:

∂ρ

∂t
+∇.(ρuD) + uI .∇ρ = 0 , (15)

∂(ρuD)

∂t
+∇. [ρuD ⊗ uD] +∇. [ρuD ⊗ uI ] +∇. [ρuI ⊗ uD] = −∇pD + µ∇2uD , (16)

pD = EOS(ρ) , (17)

The terms in red represent the additional terms compared to Eq.(1) and Eq.(2). More details about the discrete formulation are
given in [7].



Application: Fixed cylinder in an Airy wave

Test case presentation
The case of a cylinder immersed in an Airy wave is studied in this section. There is no influence of the free-surface since the
cylinder is located far from it, in addition to its location nearby the floor. We use here the experimental configuration from Jarno-
Druaux et al. [9]. The steepness is ka = 0.1 and the relative water depth is kh = 1.14. Following the Le Méhauté diagram,
a third order theory (at least) is required in this case but the wave field is generated here using an Airy wave as the cylinder
is located far from the free-surface (and as presented in the numerical simulations of [8]). The computed maximum horizontal
velocity Um at t/T = 0 within the region extending from 0.01 to 0.03m from the bottom is about 0.09m/s (following [21]). The
Reynolds number is Re = UmD

ν = 1800 and the Keulegan-Carpenter number KC = UmT
D is about 4.9. e/D = 0.5 so that the

cylinder is out of the boundary layer (the thickness of the boundary layer is δ ' 0.003m).

Figure 1: Fixed cylinder in Airy wave: sketch of the experimental configuration from [9].

The WCCH-SWENSE domain is discretized between −0.07m and −0.27m in the y-direction. and the mesh is refined locally
around the cylinder. The converged results with the IH2VOF model [8] were obtained with 50 cells per diameter in each
direction, i.e. a minimum mesh size of 0.4mm. In [21] the results are presented with a minimum mesh size of 0.1mm in the
vertical direction. In our case, the convergence for Ma ≤ 0.05 is obtained with 200 cells per diameter (corresponding to 526400
cells in the whole domain).

Comparison between experimental and numerical results
Experimental velocities were measured using a Doppler velocimeter and were averaged over 15 wave periods. For comparison
purposes, the present simulation was also run and averaged during 15 wave periods. The instant t/T = 0 corresponds to the
instant when a crest is located right above the cylinder (see [8]) which corresponds in our case to t = 0.51s. In Fig.2 the present
results are compared to the experimental snapshots presented in [9]. We clearly observe the generation of vortices predicted by
the theory (see [18]) and our results are similar to the experimental ones. As expected, the numerical solution provides some
more details of this complex flow. Indeed, small structures which were not captured by the experimental device can be observed
numerically in the near cylinder area.

Figure 2: Fixed cylinder in Airy wave: Snapshots at t/T = 0.33 and t/T = 0.8. Left: experimental streamlines from [9] averaged over 15
periods - Right: numerical streamlines obtained with WCCH-SWENSE for 200 cells per diameter averaged over 15 periods.

Fig.3 presents a comparison of the WCCH-SWENSE results with the numerical solutions from [8] and [21] (instantaneous
streamlines). A good agreement is observed with the results from [21]. Moreover, it seems that WCCH-SWENSE is able to
capture more complex phenomena and details than the model used in [21], even with the same spatial resolution within the
cylinder, showing the ability of the present WCCH-SWENSE model to capture more accurately some small structures present
within these vortex sheddings. The model from [8] shows some differences with both the WCCH-SWENSE method and the
FEM model in [21].



Figure 3: Fixed cylinder in Airy wave: Snapshots at t/T = 0.33 and t/T = 0.8. Left: numerical streamlines from [8] with 50 cells per
diameter - Middle: numerical streamlines from [21] - Right: numerical streamlines obtained with SWENSE-WCCH for 200 cells per diameter.

Conclusion
In the first part of the present paper, the SWENSE method has been extended from an incompressible Navier-Stokes formulation
to a weakly-compressible one. The original weakly-compressible Navier-Stokes equations are seen as a combination of an
incident and a disturbed solution. As only low Mach numbers are considered, an hypothesis of weak variation of the density has
been introduced. Only the disturbed solution needs to be computed, in addition to advection terms of the disturbed solution along
the imposed incident velocity. The proposed weakly-compressible SWENSE formulation has then been carefully derived and
validated in a Cartesian grid explicit solver. It will need to be further studied, namely in cases involving more complex incident
waves and 3D cases. Future researches will be mainly oriented towards the implementation of the SWENSE method within a
multiphase solver, and its application to ocean and naval engineering problems.
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