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Highlightsq A semi-analytical multiple scattering method has been extended to include multidirectional waves.q The method has been used to study the performance of an array of point-absorber wave energy converters
in multidirectional and unidirectional waves.q The shadowing effect is less pronounced in multidirectional waves, and the performance is also affected
by the wave spreading parameter and number of incident wave directions.

1 Introduction

Ocean waves provide a promising renewable energy source, and much research has been invested during the last
decades into different approaches on how to convert the energy in waves into useful electricity. Many different
technologies have been developed, and most concepts require that several or many wave energy converters
(WECs) are deployed together in arrays, or parks, if energy is to be extracted on a large scale and to lower the
cost of the produced electricity.

The layout of the wave energy park will affect the performance of the devices due to scattered and radiated
waves [1, 2], and optimal park performance includes optimizing the array layout. Many works on optimal
configurations of wave energy parks have considered only incident regular waves, and even if irregular waves
have been considered, almost all have considered only long-crested, unidirectional waves. However, real ocean
waves are multidirectional, with irregular waves travelling in different directions simultaneously.

The effect of the directional spreading parameter in multidirectional waves on the motion and performance
of an attenuator WEC was studied in [3], and it was seen that less energy could be harnessed in multidirectional
waves as compared to unidirectional waves. In [4], an array of 12 oscillating wave surge converters was studied
in multidirectional waves and it was found that the array had a slightly lower interaction factor than compared
to unidirectional waves. The wake effect behind WEC arrays was studied in [5] and [6], and both papers
found that the wake is reduced when directional wave spreading is taken into account. This effect and other
wave energy array effects in short-crested waves was also investigated experimentally in [7]. Wave run-up on
bottom-mounted cylinders was studied in [8]. The experimental and analytical results gave a good agreement
and showed that run-up is more pronounced in multidirectional waves as opposed to unidirectional, and that
the largest transverse force occurs on the last cylinder of the cylinder array, which is very different from the
behaviour in unidirectional waves.

The mentioned works show that the behaviour of offshore structures is different in multidirectional waves as
compared to unidirectional, and that we would expect a different performance of wave energy parks in realistic,
multidirectional waves. Here, the semi-analytical multiple scattering method presented in [9, 10] is extended to
include multidirectional (short-crested) waves, and applied to study the performance of arrays of point-absorbing
wave energy converters in realistic, multidirectional waves.

2 Theory

Multiple scattering theory Consider a fluid that is incompressible and irrotational, implying that it can
be described by potential flow theory using a fluid velocity potential satisfying the Laplace equation, ∇Φ = 0.
Further assume that the viscosity of the fluid can be neglected and that the wave height is small compared
to the wave length, so that the boundary constraints at the sea surface can be linearized. The fluid is then
described by linear potential flow theory, and the details can be found in many text books such as [11].

Consider an array of N point-absorbing wave energy converters, each consisting of a floating truncated
cylinder buoy connected to a linear generator at the seabed. At the origin of each buoy (xi, yi) we define
local cylindrical coordinate systems (r, θ, z). Due to the linearity of the problem, the fluid potential can be
decomposed into incident, radiated and scattered waves. The general solution to the Laplace equation and
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Figure 1: Left: Directional spreading function D(χ− χ̄) for different values of the spreading parameter s. Right:
surface elevation for unidirectional waves (top) and multidirectional waves (bottom) with spreading parameter
s = 1 and three wave directions χm = {0,±π/4}, indicated in the directional spreading function by circles.

the linear boundary constraints at the seabed, sea surface and all rigid boundaries is given in terms of Bessel
functions and vertical eigenfunctions. Graf’s addition theorem for Bessel functions is used to write the scattered
and radiated waves from one buoy as incident waves on the other buoys. By requiring continuity for the
potentials at each buoy boundary, the unknown coefficients in the potentials can be solved for by the inversion
of a diffraction matrix. For more details, please see [9, 10].

Multidirectional waves Open ocean waves are assumed, i.e. no reflective structures exist so that there
are no phase-locked waves – all the phases are randomly distributed, implying that the wave components
are independent of each other. Thus, we can treat the irregular multidirectional waves as a superposition of
harmonic waves travelling in different directions.

A single harmonic wave travelling in direction χ away from the x-axis can be described by the surface
elevation η(x, y, y) = a cos

(
ωt− k̄ · x̄+ φ

)
, where φ the phase, and ω is the angular frequency related to the

wave number vector k̄ = (k cosχ, k sinχ, 0) by the dispersion relation for dispersive ocean waves. When the
waves are composed of many waves travelling in independent directions, the surface elevation can be written as
the superposition

η(x, y, t) = Re

( ∞∑
n=−∞

M∑
m=1

amne
i[ωnt−k̄mn·x̄]

)
=

∞∑
n=−∞

M∑
m=1

∣∣amn

∣∣ cos(ωnt− k̄mn · x̄+ φmn) (1)

where the phase is φmn = arg(amn) and k̄mn · x̄ = kn(x cosχm + y sinχm). The complex amplitude coefficients

can be written in terms of the directional wave spectra as
∣∣amn

∣∣2 = S(ωn, χm)dωdχ where dω = ωn+1 − ωn

and dχ = χm+1 − χm. The expression for the surface elevation turns into an inverse Fourier integral when dω
becomes infinitesimal and we write amn = A(ωn, χm)dωdχ. The directional wave spectrum can be decomposed
into a direction independent spectrum and a directional spreading function with normalization constraint,

S(ω, χ) = S(ω)D(ω, χ),

∫ π

−π

D(ω, χ)dχ = 1, (2)
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as well as periodicity, D(ω, 2π) = D(ω, 0).
Several different directional spreading functions have been defined and studied in the literature [12, 13].

A common assumption is that the directional spreading function can be described by a unimodal model
parametrized by the mean direction χ̄ and another parameter, such as the spreading parameter or a direc-
tional width, such that it is independent of the wave frequency. Here, we will use the directional spreading
function presented in [14] and used recently in [3, 4],

D(χ− χ̄) =

{
F (s) cos2s(χ− χ̄), |χ− χ̄| < π

2
0, otherwise

(3)

with

F (s) =
1√
π

Γ(s+ 1)

Γ(s+ 1
2 )

=
1

π

(2s)!!

(2s− 1)!!
(4)

which is simply 1 over the integral in equation (2), hence the normalization constraint is satisfied. However,
for discrete wave directions the sum over all wave directions only converges to the integral value when dχ is
infintesimally small. Hence, the coefficient will be defined as

F (s) =
1∑M

m=1 cos
2s(χm − χ̄)dχ

(5)

which converges to the value in (4) when dχ → 0.
The principal wave direction will here be considered as χ̄ = 0, i.e. moving along the x-direction. The shape

of the directional spreading function for different values of the spreading parameter s is shown in figure 1. As
can be seen from the figure, the higher the spreading parameter, the more energy in the waves is distributed
along the principal wave direction. From (2), the amplitude function can be decomposed into a directional
independent part and the directional dependent part. However, only the modulus of the complex amplitude is
known, and we add an unknown phase, which is assumed to be uniformly statistically distributed over (−π, π),

A(ω, χ) =
∣∣A(ω, χ)∣∣eiφ(ω,χ) =

√
S(ω)D(ω, χ)

1

dωdχ
eiφ(ω,χ) =

∣∣A(ω)∣∣√D(ω, χ)
1

dχ
eiφ(ω,χ) (6)

where D(ω, χ) is the directional spreading function defined in (3). In this work, we will use incident irregular
unidirectional waves for which the modulus |A(ω)| is known, and compute the complex amplitudes for the
multidirectional waves according to the expression in (6).

In the frequency domain, the surface elevation can be written as the product of the amplitude function and
a transfer function Hm(ω), which in the time domain becomes a convolution,

η(x, y, t) =
M∑

m=1

D(χm − χ̄)dχ η(0, 0, t) ∗ hm(t) (7)

where η(0, 0, t) = Â(ω) is the surface elevation at point (x, y) = (0, 0) and hm(t) is the inverse Fourier transform
of the transfer function Hm(ω).

Equations of motion When the fluid potentials have been solved for by the above procedure, the hydrody-
namical forces on the floats is given in the frequency domain by the surface integral of the potential over the
wetted surface of the floats. The excitation force is obtained from the case when all buoys are held fixed and
there are incident (multidirectional) waves, and the radiation force is obtained from the case when all buoys
are free to oscillate and there are no incident waves. When the hydrodynamical forces have been obtained, the
equations of motion for the float and the connected linear generator are solved in the frequency domain and
the motion in time is obtained by inverse Fourier transform [9, 10]. The absorbed power for each wave energy
converter is computed in the time domain and showed in figure 2.

3 Results

The results for wave energy parks in unidirectional vs multidirectional waves is shown in figure 2. The shadowing
effect in the multidirectional waves is less pronounced than for the unidirectional waves, where the WECs in
the first rows perpendicular to the incident principal wave direction have a higher energy absorption than the
ones in the last rows. Figure 2b) shows one simulation with spreading parameter s = 5 and 15 wave directions
χm = {0,±mπ/16}. Due to the randomness of the phase in equation (6), the power absorption is not symmetric
over the x-axis. When averaging over a large number of simulations, the results for the multidirectional waves
will become symmetric over the principal wave direction. Similar results are obtained for different values of the
spreading parameter and number of incident wave directions, which will be discussed at the workshop.
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Figure 2: Park performance for an array of 16 WECs in a) unidirectional (long-crested) waves and b) multidi-
rectional (short-crested) waves. Spreading parameter s = 5 is used for the multidirectional waves and there are
15 incident wave directions χm = {0,±mπ/16}, m = 1, . . . , 7. The color shows the ratio of the time averaged
power by the device and a device in isolation.

4 Conclusions

Realistic waves are irregular and short-crested, which must be taken into account when studying and optimizing
the performance of wave energy systems. Here, the performance of arrays of 16 point-absorber wave energy
converters has been studied in unidirectional (long-crested) and multidirectional (short-crested) waves. An
analytical multiple scattering theory has been used to evaluate the hydrodynamical interactions in the array.
The results show that the shadowing effect is less pronounced in the short-crested waves, which is of relevance
when designing optimal layouts for wave power parks.
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