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Highlights

• Flexural gravity wave blocking in a two-layer fluid is studied.
• The condition for wave blocking is obtained analytically for surface and internal modes in water of finite

depth and the associated results in the shallow water limit are derived as special cases.
• The dependence of the compressive force acting on the ice-covered surface and period of the blocked

waves are illustrated graphically.

1. Introduction

Flexural gravity waves in an ice-covered two-layer fluid is studied with an emphasis on wave blocking due
to the compressive force. This work extends the results found earlier by [1] in an ice-covered homogeneous
fluid. The wave blocking phenomena is observed in the internal mode as well as the surface mode. Moreover,
there exists situations where the internal mode, at the interface between two layers of fluid, propagates faster
than surface mode. This is contrary to the usual result where the surface mode is faster than the internal mode.
Furthermore, the dependency of compressive force and time-period of blocked waves are shown pictorially for
two different cases, namely finite upper layer fluid and shallow water approximation.

2. Mathematical formulation

Figure 1: Schematic diagram of the physical problem

In the present study we consider the small ampli-
tude response of a floating thin elastic plate, the stan-
dard model for sea ice and very large floating struc-
tures. The thin elastic plate is assumed to be of in-
finite extent and floating on the mean free surface of
water of finite constant depth. The problem is two-
dimensional with the x-axis horizontal and the z-axis
vertically downward (Fig. 1). The fluid domain con-
sists of two different immiscible fluids of density ρ1
and ρ2 such that ρ2 > ρ1 and we define s = ρ1/ρ2.
Our interest here is to understand in detail the proper-
ties of the flexural gravity waves which can propagate
in such a system. The upper fluid occupies the region
−∞ < x < ∞, 0 ≤ z ≤ h and the lower fluid occupies the region −∞ < x < ∞, h ≤ z ≤ H . The fluids
are assumed to be inviscid, incompressible and both fluids motion are irrotational which ensures the existence
of the velocity potentials Φj(x, z, t) for j = 1, 2 which satisfy the two-dimensional Laplace equation given by

∇2Φj = 0, j = 1, 2, (1)

in the upper and lower layer fluid respectively. The linearized kinematic boundary condition on the plate
covered surface is given by

∂η1
∂t

=
∂Φ1

∂z
on z = 0, (2)

where η1(x, t) is the deflection of the floating elastic plate. In the presence of an in-axis compressive force
N acting along the x-axis of the homogeneous floating elastic plate, the linearized plate covered dynamic



boundary condition on the mean free surface is given by [2])(
EI

∂4

∂x4
+N

∂2

∂x2
+ ρpd

∂2

∂t2
+ ρ1g

)
η1 = ρ1

∂Φ1

∂t
on z = 0, (3)

where EI = Ed3/(12(1 − ν2)) is the flexural rigidity, E is Young’s modulus, ν is Poisson’s ratio, d is the
thickness of the floating plate and ρp is the plate density. The linearized dynamic and kinematic boundary
conditions at the the mean interface are

ρ2

{
gη2 −

∂Φ2

∂t

}
− ρ1

{
gη2 −

∂Φ1

∂t

}
= 0 and

∂η2
∂t

=
∂Φj

∂z
for j = 1, 2, on z = h, (4)

where η2(x, y, t) is the interface elevation. Finally, at the rigid bottom the boundary condition is given by

∂Φ2

∂z
= 0, z = H. (5)

3. Characteristics of wave motion

Characteristics of flexural gravity wave motion in surface and internal modes are investigated by analyzing the
dispersion relation associated with the problem by assuming plane wave solutions of the forms

η1 = Re{a1ei(kx−ωt)}, and η2 = Re{a2ei(kx−ωt)}, (6)

where k is the wave number, ω is the angular frequency, a1 and a2 are the amplitudes of the plate deflection and
interface elevation respectively. Thus, the associated velocity potentials Φ1 and Φ2 satisfying (1) along with
the boundary conditions (2) and (5) are given by (see [3])

Φ1 = (A cosh kz − iωa1k
−1 sinh kz)ei(kx−ωt) and Φ2 = B cosh k(H − z)ei(kx−ωt), (7)

with A and B being the unknown constants to be determined. Using the boundary conditions (4) in (7), the
constants A, B and a2 are obtained in terms of a1 which in turn yields the velocity potential in upper layer fluid
as

Φ1 = − iω

k
(µ cosh kz + sinh kz)η1 with µ = −s+ coth kh{coth k(H − h)− (1− s)gk/ω2}

s coth kh+ coth k(H − h)− (1− s)gk/ω2
(8)

and
a2
a1

=
s

sinh kh
{
s coth kh+ coth k(H − h)− (1− s)gk/ω2

} . (9)

Under the assumption that the plate thickness is very small compared to the wavelength, i.e., assuming the
elastic restoring force to be much stronger than the inertial force, we neglect the term ρpdω

2/ρ1 << 1 following
[3]. This assumption simplifies our equations and physically is sensible because the term needs to be small if
the elastic plate floats and is thin. Thus, using (3) and (8), the dispersion relation for the flexural gravity wave
motion in two-layer fluid of finite depth is obtained as

A1ω
4 −B1ω

2 + C1 = 0, (10)

where A1 = s + coth kh coth k(H − h), B1 = gk[(1 − s) coth kh + A2{s coth kh + coth k(H − h)}],
C1 = A2(1− s)g2k2 and A2 = Dk4 −Qk2 + 1 with D = EI/(ρ1g) and Q = N/(ρ1g). It may be noted that
in [3] effect of compression was not included in their two-layer fluid model. The dispersion relation in Eq. (10)
is a quadratic equation in ω2 whose solution yields the wave frequencies in the surface and internal modes and
are denoted as ω+ and ω− respectively. Thus,

ω2
± =

B1 ±
√
B2

1 − 4A1C1

2A1
and c±g =

ω2
±

dB1
dk − ω

4
±

dA1
dk −

dC1
dk

2ω±(2A1ω2
± −B1)

, (11)

where cg is the group velocity with subscripts ± corresponding to waves in surface and internal modes respec-
tively. As discussed in [1], occurrences of blocking are illustrated in Fig. 2. Blocking points are readily iden-
tified by the maximum (primary blocking) and minimum (secondary blocking). The behaviour of our system
is complicated and we make here a further simplification. Under the assumption of deep water approximation,
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Figure 2: Dispersion graphs for both the waves at surface and interface are depicted for different values of
density ratio s with Q/

√
D = 1.95 and h = 10. Wave blocking, characterized by the occurrences of maxima

and minima, is observed in both the modes. Rigid black squares corresponds to primary blocking, whereas rigid
black circles to secondary blocking. When density ratio increases, i.e., difference of densities is small, slope
of the dispersion curve for surface wave (movement of point P along dispersion curves for different values
of density and fixed incoming wave frequency ωp) in between two blocking points increases where as reverse
pattern is observed for waves in internal mode. This results in higher rate of negative kinetic energy propagation
for surface waves which is due to the transfer of such energy from internal waves.

assuming |k|h >> 1 and |k|(H − h) >> 1, (11) yields

ω2
+ = (Dk4 −Qk2 + 1)g|k|, ω2

− =
(1− s)g|k|

1 + s
. (12)

The dispersion graph is plotted in Fig. 3 and the regions where internal mode travels faster than the surface
mode are identified. On the other hand, when upper layer depth is comparable with the wavelength (kh = O(1))
and lower layer water depth is large (k(H − h) >> 1), the dispersion relation (11) yields

ω2
+ =

(Dk4 −Qk2)(s coth kh+ 1) + 1 + coth kh

coth kh+ s
gk, ω2

− =
(1− s)A2gk

(1 + s coth kh)A2 + (1− s) coth kh
. (13)

Wave blocking occurs in both the wave modes when no wave energy propagation occurs. Since, the rate
at which wave energy propagates is proportional to group velocity of the wave, wave blocking is identified
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Figure 3: Under deep water approximation, the regions (α, α′), (β, β′), (γ, γ′) and (δ, δ′) correspond to the
regions where internal mode travels faster than the surface mode.



mathematically by dω±/dk = 0. For surface waves, in particular, the condition on wave blocking yields the
following expression for compressive force:

Q =

{
5pr − kh(1− s2)(1− coth2 kh)

}
Dk4 + qr − kh(1− s)(1− coth2 kh)

k2
{

3pr − kh(1− s2)(1− coth2 kh)
} (14)

where p = s coth kh+ 1, q = 1 + coth kh and r = s+ coth kh.

It is to be noted that, for fixed frequency, the above expression provides two different values ofQ corresponding
to primary and secondary blocking. Substituting the above expression into (13), the following relation between
blocking frequency and wave number is obtained for both the surface and internal modes, respectively, as

ωb
+ =

√
2pq − kh(1− s)(1− coth2 kh)− 2p2Dk4

3pr − kh(1− s2)(1− coth2 kh)
gk and ωb

− =

√
−B̂ +

√
B̂2 − 4ÂĈ

2Â
, (15)

where Â = 2(Dk4 − 1)(1 + s coth kh)2 − (1 − s) {τ + (1 + 2s coth kh) coth kh}, τ = coth kh − kh(1 −
coth2 kh), B̂ = gk(1 − s)

{
(1− s)(τ + 2 coth kh)− 4(Dk4 − 1)(1 + s coth kh)

}
and Ĉ = 2g2k2(1 −

s)2(Dk4 − 1), and the corresponding compressive force is calculated from the following relation:

(Dk4 −Qk2 + 1)2 +
(1− s)τ
(1 + sτ)

(Dk4 −Qk2 + 1) + 2
(1− s)
(1 + sτ)

(Dk4 − 1) coth kh = 0. (16)

Figures 4 and 5 demonstrate the dependencies of compressive force and time-period of blocked waves for
surafce and internal modes respectively.
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Figure 4: Dependency between compressive force and time-period of
blocked surface waves are demonstrated for different values of density ra-
tio. Rigid lines correspond to primary blocking (related to incident wave)
and dash-dot lines are for secondary blocking (related to waves with neg-
ative kinetic energy). Point of inflexion where wave blocking initiates,
is represented by the points (Q∗

i , T
∗
b ), i = 1, 2, 3 for s = 0.9, 0.95

and 0.98, respectively. The compressive force required to block a wave
of specific time-period is represented by the points on the curves. How-
ever, waves having time-period less than T ∗

b never gets blocked by the
action of compressive force. Also, depending upon the density ratio, a
minimum of compressive force is required to achieve wave blocking, e.g.
Q∗

1 for s = 0.9.
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Figure 5: Internal wave time-period and compressive force acting on
the floating plate dependency is pictorially depicted for different values of
density ratio. The pattern of the graphs are similar in nature as observed
in Fig. 4. Higher density ratio requires high compressive force to initiate
blocking for waves with higher time-period. The compressive force Q∗

3
corresponding to point of inflexion for waves in stratified fluid having
density ratio s = 0.98 is higher than Q∗

2 (for s = 0.95) and Q∗
1 (for

s = 0.9). Corresponding time-period T ∗
b,3 is also higher than T ∗

b,2 and
T ∗
b,1.
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