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In the fore part of a train of progressive waves generated on water surface by harmonic motions
of a wavemaker, the transient waveform ahead of wave train is often called wavefront. A primary
analysis based on the method of contour integral in complex wavenumber plane, different from
that used by Miles (1962), is performed here to study the exact behavior of wavefront. We define
wavefront function as the wave amplitude which envelopes the forerunners in the wavefront. It is
shown that the starting position of wavefront propagates at the very group velocity and has an
amplitude value different from 1/2 that predicted by Miles. Three classes of waves in different
region are then demystified by revealing their interesting features.

1 Introduction
A lot of studies on wave generations by different wavemakers in a wave flume or a basin have been
carried out, as regularly reported by ITTC. Typical analyses such as that by Joo et al. (1990) are
more focused on singularities of flow on wavemakers on one side, and steady-state waves at some
distance from wavemaker on the other, or guidelines by ITTC for selecting wavemaker types as
function of desired wave characteristics. However, few studies are on transient wavefront generated
by an arbitrary excitation or harmonic motions of wavemaker. The classical one by Miles (1962)
started with the formal linear solution of Cauchy-Poisson type, to give the linear wave elevation by
a time convolution integral of the product of excitation and the memory function which is expressed
by a wavenumber integral. The approximation of the memory function obtained by the method
of stationary phase is then used in the convolution integral to obtain asymptotic representation of
wave elevations including the wave envelope. Miles’ results are then valid for waves observed at
a position far from wavemaker. The recent results by Eatock Taylor et al (1994) show that the
wave envelope of Miles does not fully wrap up linear wave elevations in the wavefront nor transient
region behind.

New analysis based on the method of contour integral in complex wavenumber plane is per-
formed here. The linear wave elevation generated by harmonic motions of a flexible vertical plate,
same as that studied by Eatock Taylor et al (1994) but in deepwater is considered. The formal
solution represented by a single wavenumber integral (after integration of the time convolution) is
reformulated in complex plane and by making use of a new integral variable. The contour inte-
gral in complex plane permits us to get contributions from poles and remaining integral along the
imaginary axis. The residues represent the steady-state oscillations and an exponential decreasing
term behind the wavefront. The integral along the imaginary axis with an exponentially decreasing
integrand representing oscillations in wavefront is called wavefront function. This wavefront func-
tion is further written in asymptotic expressions using the complex error function. We define three
classes of waves in different regions which are the wavefront starting from the position associated
with wave group velocity, the steady-state wave train at some distance behind the wavefront, and
the transient wave train in between. Furthermore, the wave envelope at the wavefront is shown to
be larger than 1/2 that predicted by Miles (1962).

2 Wave elevations due to harmonic motions of wavemaker
We consider a semi-infinite fluid of gravity g = 1 limited on the top by the free surface and use a
Cartesian coordinate system (o, x, z) located at the mean surface with axis oz pointing upwards.
The flexible vertical plate is located at x = 0 and oscillating with horizontal velocity A(z) sin(ωt)



with amplitude A(z) = Aω exp(k0z) along the plate, frequency ω and wavenumber k0. The wave
elevation for x > 0 is obtained by the classical method based on Fourier transform in Dai (1998)
and is written as :

ηI(x, t) = −A sin(k0x) cos(ωt)−A
2k0
π

−
∫ ∞

0

cos(kx) cos(βt)

k2 − k20
dk (1)

where −
∫

stands for the principal value in the sense of Cauchy. The dispersion relation imposes :

ω =
√

k0 and β =
√
k

The integral (1) can be rewritten in a compact form

ηI(x, t)/A = ℜ{η(x, t)} with η(x, t) = y
∫ ∞

0

k0
π(k0 + k)

ei(kx+βt) + ei(kx−βt)

k0 − k
dk (2)

in which y
∫

stands for the integration along the real axis but circumventing above the pole k = k0.
Now we consider the change of variables below

k = u2t2/4x2 , u0 = 2ωx/t and τ = t2/4x (3)

in (2). We have :

η(x, t) = e−iτy
∫ ∞

0
F (u)

ei(1+u)2τ + ei(1−u)2τ

u0 − u
du (4)

with

F (u) =
2u20u

π(u20 + u2)(u0 + u)
(5)

associated with two oscillatory functions exp[i(1+u)2τ ] and exp[i(1−u)2τ ]. The contour associated
with the first along which the integrand is steepest descent is easy to find. The contour associated
with the second is more complex due to the multiple values of (1−u)2 for u ∈ (0, 2) and the location
of poles. The detail is too lengthy to present in this summary. The final result is

η(x, t) = −i
[
e−ωt−ik0x + ei(k0x−ωt)

]
H(1− u0) + E(u0, τ)e

−it2/4x (6)

with H(·) the Heaviside function.

The result (6) is identical to (2) and uniformly valid with respect to u0 = 2ωx/t and regardless
of x > 0 which should be large in Miles’ development. The first part has an exponential decreasing
term with respect to ωt and the steady-state oscillations sin(k0x − ωt) as we take the real part.
The steady-state waves are present only for u0 < 1, i.e. x < t/2ω = cgt with cg = 1/2ω the group
velocity according to the definitions (3) so that the line x = cgt is the front of wave train. Since
only the second part is present for x > cgt, i.e. ahead of wave train, the amplitude function E(u0, τ)
is called wavefront function. Of course, the second part is also present behind the wavefront and
oscillatory described by exp(−it2/4x).

3 Wavefront function and its approximation
The wavefront function in (6) is defined by the integral :

E(u0, τ) =
1

2

∫ ∞

0
f(u0, τ, y)e

−yτ dy (7)

with an exponential decreasing integrand which is given by :

f(u0, τ, y) = −ieiτ
{

F (
√
1 + iy − 1)√

1 + iy(
√
1 + iy − 1− u0)

+
F (1−

√
1 + iy)√

1 + iy(
√
1 + iy − 1 + u0)

}
+ (1− u0)e

−iπ/4F (1 +
√
iy) + F (1−

√
iy)

√
y[y + i(1− u0)2]

− F (1 +
√
iy)− F (1−

√
iy)

y + i(1− u0)2
(8)



which is a smooth function except for u0 = 1 and at y = 2 where F (1−
√
iy) is singular. This singu-

larity is removable and the integration can be performed accurately by using a classical quadrature
method. The singularity of order O(y−1/2) for y → 0 is integrable. Indeed, the singular behavior
of f(u0, τ, y) near y = 0 needs some special treatments.

In fact, for large values of τ and u0 > 0, the major contribution of (7) comes from the values of
f(u0, τ, y) near y = 0. It is understood that the first term involving

√
1 + iy is of higher order and

the Taylor expansion of F (1±
√
iy) at y = 0 is used to approximate f(u0, τ, y) given by (8). The

approximation of f(u0, τ, y) is then introduced in (7) to obtain :

E(u0, τ) ≈ −iπ {sign(u1)F0 − π|u1|(u1F2/2− F1)} eiu
2
1τerfc(

√
iu21τ)

+ eiπ/4(u1F2/2− F1)
√

π/τ (9)

in which erfc(·) stands for the complementary error function defined in Abramowitz & Stegun
(1967), u1 = 1− u0 and

F0 = F (1) ; F1 = F ′(1) ; F2 = F ′′(1) (10)

with the function F (u) given by (5), F ′ and F ′′ the first and second derivatives of F (u) with respect
to u, respectively.

The analytical expression (9) is a very good approximation of the wavefront function (7) since
the error is of order O(τ−3/2). The function exp(z2)erfc(z) being a smooth function, the wavefront
function E(u0, τ) is smooth too except there is a step for the imaginary part when u0 crossing
u0 = 1. The asymptotic values of wavefront function for large u0 and small u0 are

E(u0, τ) ≈ O(u−2
0 τ−1/2) for u0 ≫ 1 and E(u0, τ) ≈ O(u20) for u0 ≪ 1 (11)

In the vicinity of u0 = 1, we have :

E(u0, τ) ≈ −(i/2)sign(ϵ) + (1/4)eiπ/4/
√
πτ +O(ϵ) = (1/

√
2πτ,±1 + 1/

√
2πτ)/2 +O(ϵ) (12)

for a positive ϵ → 0. It is worth noting that the approximation (9) is not valid for u0 → 0 or for
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Figure 1: Wavefront function E(u0, τ) on the left with varying u0 and on the right with varying τ

small values of τ . The results of wavefront function by using the exact formulation (7) and those
of approximation (9) are depicted on Figure 1. The curves represent exact values while symbols
depict the approximations on the left part (for several values of τ) and on the right part (for several
values of u0) of the figure.

4 Three classes of waves
The waves defined by (6) can be regrouped as the sum of three classes

η(x, t) = S(k0x− ωt)H(t− 2ωx) + B(t2/4x)H(t− 2ωx) + F(t2/4x)H(2ωx− t) (13)



with the steady-state part of harmonic oscillations

S(k0x− ωt) = −iei(k0x−ωt) (14)

the transient part behind the wavefront

B(t2/4x) = −ie−ωt−ik0x + E(u0, τ)e
−it2/4x (15)

and the wavefront
F(t2/4x) = E(u0, τ)e

−it2/4x (16)

These three classes of waves are depicted on Figure 2 along the wave propagation path x/λ from
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Figure 2: Waves at the instant t = 15(2π/ω) along x(k0/2π) from 0 to 12 for k0 = 1.5

0 to 12 with λ = 2π/k0 the wavelength at the instant t = 15T with T = 2π/ω the period. Three
wave regions are distinguished. The wavefront (red line) represented uniquely by F(t2/4x) starting
from the position x = cgt is oscillatory but with waves of wavelength increasing with x. Depending
on the observation instant t, there may have one or several forerunners in wavefront. Behind the
wavefront, a train of progressive waves (red line) with varying amplitude which is the sum of regular
waves S(k0x − ωt) with constant wave amplitude (blue line), and transient waves B(t2/4x) with
fast decreasing amplitude for decreasing x (yellow line). Till some distance where the amplitude
of B(t2/4x) is smaller than 0.01 (if we accept the criterion to neglect waves of amplitude smaller
than 1% that of steady-state waves), wave train becomes regular (steady-state, blue line and red
line are superposed). Furthermore, the envelope of waves (violet line) over three regions and that
(light yellow line) of transient waves B(t2/4x) are drawn.
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