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I. INTRODUCTION

Deep-water waves differ qualitatively from other wave phenomena. No wave equation exists, which
means that the wave is essentially a surface phenomenon, governed by the forces on the surface particles.
The bulk fluid is a medium for transmitting a continuous pressure field that adjusts itself to the gravita-
tional motions of the surface particles. This pressure adjustment is instantaneous in the incompressible
fluid.
Stokes [1] initiated the theory of nonlinear deep-water waves. Three branches of development for

strongly nonlinear theory have grown from seminal papers. (i) The highest Stokes wave [2]. (ii) The
instability of Stokes waves [3]. (iii) Breaking of deep-water waves [4].
The early nonlinear theories in 2D have now grown into full 3D theories. However, a long-standing

dilemma is that of dimensional reduction. Different procedures in this direction exists, and prominent
among these are: (i) Nonlinear Schrödinger-type equations for deep-water wave groups. (ii) The construc-
tion of higher order spectral methods (HOSM) by expansion if the variables into powers of the surface
elevation [5, 6].
The present paper offers a fully consistent scheme of reducing the spatial dimension of nonlinear deep-

water wave theory by introducing the concept of fractional derivatives along the free surface. Starting
from the 2D Euler equations for an incompressible potential flow, a one-dimension model describing deep
water surface waves is derived. Similar to the Shallow Water case, the z-dependence of the dependent
variables vanishes and a set of two equations for the surface velocity and the surface elevation remains.
The model is nonlocal and can be formulated in conservative form, describing waves over an infinitely
deep layer. Finally, numerical solutions are presented for different initial conditions. Coherent wave
trains are unstable due to the Benjamin-Feir instability [3] and localized solutions are obtained.

II. THEORY

A. Potential flow

For brevity, the derivation of the model is presented only in two spatial dimensions, x, z. It can be
straightforward extended to the 3D case.
We are looking for solutions of the non-dimensional Euler eqs. for an incompressible fluid in the half

space −∞ < z ≤ h(x, y, t). In lateral direction we assume periodic boundary conditions (b.c.) on

0 ≤ x ≤ Γ. We use the time scale τ =
√

ℓ/g with an arbitrary length scale ℓ. We assume that the flow
field can be derived from a potential

~v = ∇Φ (1)

where Φ is a solution of the Laplace eq., implying

∇2~v = 0 . (2)

The surface elevation h is determined by the kinematic b.c.

∂th = vz|z=h − vx|z=h∂xh . (3)

Let uh(x, t) = vx(x, z = h(x, t), t) be the horizontal velocity component at the free surface located at
z = h. From the Euler eqs. together with (3) one derives

∂tuh = −1

2
∂xu

2
h + ∂zP |h∂xh (4)



where the boundary condition t̂ · ∇P |h = ∂xP |h + ∂xh∂zPh = 0 with surface tangential vector t̂ is used.
Eq. (4) serves as a boundary condition for (2) at z = h(x, t). For the following treatment, it is of
advantage to formulate (3) also in conservative form

∂th = −∂xS (5)

with the flux

S(x, t) =

∫ h(x,t)

−∞

dz vx(x, z, t) . (6)

For an infinitely deep layer, the asymptotic b.c. ~v = 0 for z → −∞ must hold. Hence the general solution
of (2) reads

vx =
∑

k

uk(t)e
|k|zeikx + c.c. (7)

with c.c. as the complex conjugate.

B. Nonlocal expansion

Considering (4) and (5) as evolution eqs., the original 2D problem is reduced to a 1D system in the
horizontal coordinate x only. However, to evaluate the flux (6) one needs to know vx(x, z, t). Taking (7),
eq. (6) reads

S(x, t) =
∑

k

e|k|h(x,t)

|k| uk(t)e
ikx + c.c. (8)

To determine the amplitudes uk from uh, we evaluate (7) at z = h and expand the exponential function
up to a given order hN :

uh =
∑

k

uk(t)

N
∑

n=0

(|k|h)n
n!

eikx + c.c. (9)

Introducing the fractional differential operator of order hN :

L̂N (h) =
N
∑

n=0

hn(−∂xx)
n/2

n!
(10)

with the Fourier representation

(−∂xx)
n/2 −→ |k|n (11)

eq. (9) can be written as

uh = L̂N (h)
∑

k

uk(t)e
ikx + c.c. (12)

Using the same technique, S from (8) can be expressed as

SN = L̂N (h)(−∂xx)
−1/2

∑

k

uk(t)e
ikx + c.c. (13)

leading finally to

SN (x, t) = L̂N (h)(−∂xx)
−1/2L̂−1

N (h)uh(x, t) (14)

where L̂−1
N is the operator inverse of L̂N .



C. Second order model

In the following we shall restrict ourselves to N = 1, resulting in a model of second order in the
dependent variables h(x, t), uh(x, t). With

L̂1 = 1 + hD̂, L̂−1
1 = 1− hD̂ ,

and the abbreviationD̂ ≡ (−∂xx)
1/2 eq. (14) turns into

S1 = D̂−1uh − D̂−1(hD̂uh) + huh (15)

where only terms up to the second order in uh, h are included. In (4), it is sufficient to express ∂zP |h up
to first order by the Euler eq.:

∂zP |z=h = −1− ∂twh

with the vertical velocity component wh(x, t) = vz(x, z = h(x, t), t) at the surface. wh is related to uh by
the incompressibility condition according to (again only linear terms are needed)

wh = −∂xD̂
−1uh

Finally, (4) turns into
[

1− (∂xh)∂xD̂
−1

]

∂tuh = −∂x

[

1

2
u2
h + h

]

. (16)

After inverting the operator on the left-hand side of (16), the complete model reads

∂tuh = −∂x

[

1

2
u2
h + h

]

+ (∂xh)D̂h, ∂th = −∂xS1 (17)

with S1 from (15).

Taking only linear terms into account (L̂0 = 1, S0 = D̂−1uh) one finds from (17)

∂tth = ∂xD̂
−1∂xh = −D̂h (18)

where we have used the identity ∂xx = −(D̂)2. Eq. (18) possesses the well-known short-wave dispersion
relation ω = ±|k|1/2.

III. NUMERICAL METHOD AND RESULTS

A. Numerical method

To evaluate (15), the expressions

D̂f(x), D̂−1f(x) (19)

must be computed. The operator (11)

D̂n = (−∂xx)
n/2

is nonlocal for odd n and (19) can be written as

D̂nf(x) =

∫ Γ

0

dx′ G(n)(x− x′)f(x′) (20)

with the Green’s function

G(n)(x− x′) =
1

Γ

∞
∑

ℓ=−∞

|kℓ|neikℓ(x−x′)

and kℓ = 2πℓ/Γ. However, evaluating (20) results in time-consuming computations of convolutions.
Hence it is much more effective to compute (20) in Fourier space where it simply reads

D̂nf̃ℓ = |kℓ|nf̃ℓ (21)

where f̃ℓ is the discrete Fourier transform of f(xi) and can be obtained numerically by any standard
Fast-Fourier transform (FFT) [7].
The derivatives with respect to x occurring in (17) are computed by centered differences to ensure the

conservation of
∫

Γ
uh dx,

∫

Γ
h dx. Finally, time integration is achieved by an explicit 2nd-order Adams-

Bashforth algorithm [8].



B. Results

FIG. 1: Left frames: snapshots of a BF unstable wave train. Right frames: Two counter-propagating waves
enveloped by Gaussians.

The x-dimension is discretized with N = 2048 mesh points, the step sizes used are ∆x = 0.4, ∆t =
0.003, resulting in a side length of Γ = 819.2.
The time series in fig.1 (left frames) presents the evolution of a traveling wave to the right side with

wave length λ = 2π/k = Γ/60 ≈ 13.7 and amplitude A = 0.1. To trigger the side band (Benjamin-Feir)
instability [3], a weak phase disturbance has been added. The speed of the (undisturbed) traveling wave
follows as

c = ω/k = 1/
√
k ≈ 1.46,

giving a a Courant number c∆t/∆x ≈ 0.011.
Another initial condition with two counter-traveling waves enveloped by Gaussians is used for the runs

depicted in Fig.1, right frames. The Gaussian pulses travel in opposite direction and interact without
changing their shapes strongly. Due to the periodic b.c. these interactions take place at equidistant time
intervals.

[1] G.G. Stokes, Trans. Camb. Phil. Soc. 8, 441 (1847)
[2] R.G. Dean, J. Geophys. Res. 70, 4561 (1965)
[3] T.B. Benjamin, J.E. Feir, J. Fluid Mech. 27, 417 (1967)
[4] M.S. Longuet-Higgins, E.D. Cokelet, Proc. R. Soc. Lond. bf A350, 1 (1976)
[5] B. J. West et al.,J. Geophys. Res. 92, 11803 (1987)
[6] D. G. Dommermuth, D. Yue, J. Fluid Mech. 184, 267 (1987)
[7] P.N. Swarztrauber, Academic Press, 51-83 (1982)
[8] W.H. Press, Numerical Recipes, Cambridge Univ. Press (2014)


