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1 INTRODUCTION

Numerical evaluation of the far-field and near-field waves created by a ship hull, of length L, that advances
at constant speed V along a straight path in calm water of uniform finite depth D are considered within the
classical framework of linear potential flow theory. This theoretical framework is realistic and actually the
only practical option to calculate the far-field ship waves. As is illustrated in Zhang (2015), the authors have
developed the practical method to calculate the far-field and near-field ship waves in deep water. Now the similar
idea is applied to shallow water situation. The flow pressure over a ship hull surface can be formally decomposed
into a non-oscillatory local-flow component and an oscillatory wave component. The wave component yields
a major, indeed dominant contribution to the wave drag, the hydrodynamic lift and moment, and the related
sinkage and trim experienced by a ship. Thus, numerical evaluation of the wave component is a critical element
of the computation of the near-field flow around a ship hull, as well as far-field ship waves as already shown in
Zhang (2015).

The Froude numeber F and the nondimensional water depth d* and d¥ are defined as
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where g denotes the acceleration of gravity. Finite water depth effects are only significant if " < dY with
dY =~ 3, and the water depth can then be regarded as effectively infinite for d. < d". The waves and the
related flow around the ship hull are observed from an orthogonal frame of reference and related coordinates
X = (X,Y, Z) attached to the ship. As is shown in Fig.1, the Z axis is vertical and points upward, with the
undisturbed free surface taken as the plane Z = 0. The X axis is chosen along the path of the ship and points
toward the ship bow. Far-field ship waves are then found in the region X < 0 aft of the ship. Nondimensional
coordinates and the corresponding Fourier variables are defined as

x=(2,y.2) = (X,Y, 2)g/V? and (@8, k= a2+ 52) = (A, B,K)V?/g (2)
where
(o, B) = (\/k tanh(kd/F?), £1/k% — ktanh(kd/F‘z)) (3)

As shown in Fig.1,x stands for a flow field point located within the flow region outside the mean wetted ship
hull surface, denoted as L, and € = (¢,7,¢) denotes a point of X1
Within the context of linear potential flow theory considered here, the elevation e = Zg/V? of the free
surface above or below the plane Z = 0 is given by e(x,y) = ¢.(z,y,z = 0). Moreover, similar with the deep
water stuation, the wave elevation e can be expressed as a linear superposition of elementary wave functions F
defined as
E=e™  with ¢ = accost) 4+ Bsine (4)

Here, ¢ denotes the phase of the elementary wave function E. h denotes the horizontal distance between field
point and the origin x = 0,y = 0, taken at the centroid of the ship water plane. i is the polar angle measured
from the negative = axis (ship track), i.e.

H H/L
hE\/x2+y2E—gE F/2 and tanw:% (5)

Specifically, the free-surface elevation e(z,y) can be represented in terms of the Fourier integral

koo
6(1'71/) = Re : AAEdk with ky = (2 + 10F)2 (6)
0
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Fig. 1: Definition sketch for the computation of

ship waves created by a ship hull that advances at Fig. 2: Variations of the asypmtote angle
constant speed along a straight path in calm water Yasymp(d”) for 0 < d¥ < 1 (dashed line) and of
of finite water depth D. the cusp angle @/qusp(dv) for 1 < d (solid line)

with respect to 0 < dv < 3.

where kg is defined as

{positive root of k = tanh(kd") if d¥ >1 )
0 =

0 ifd <1

the finite range of integration k., and the filter function A in Eq.6 are used to eliminate unrealistic short waves,
as now briefly explained.

The filter function A in Eq.6 is based on parabolic extrapolation, as given in Huang (2013). The extrapolation
height in this parabolic extrapolation filter is extended here from the ship hull surface 3, as considered in
Huang (2013), into the flow region outside 7 in the same straight-forward manner as in Zhang (2015).

The amplitude function A, also called wave-spectrum function, in the Fourier-Kochin representation (6)
is defined as a superposition of elementary wave functions over the ship hull surface X¥. For instance, the
amplitude function A = A(k, &, dY) associated with the classical Hogner approximation is defined explicitly in
terms of the Froude number F, the water depth dV and the shape of the ship hull surface = as

2 B cosh [kz(z—&-dvﬂ e—i(a+pn)
. HE=) cosh(kdV) /1 —tanh(kdV)/k

na(§)da(§) (8)

F* Jou

where H (£ — x) denotes the Heaviside unit-step function, da(€) and n. (&) stand for the differential element of
area at a point & € ¥ and x component of the unit vector n = (n,, Ny, n;) normal to § € Y H  repectively.

The Fourier integral (6) is a major critical element of the computation of near-field and far-field ship waves.
Expressions (5) and (4) show that the trigonometric function F in the Fourier integration(6) for 1 < h therefore
requires a huge number of integration points and is not practical if a typical integration rule (e.g. Gaussian or
Simpson) is used.

A simple analytical approximation, based on Kelvin’s classical method of stationary phase in Thomson
(1887), can be used in the far field 1 < h for 1] < theusp Or [ < Yasymp if d¥ > 1 or d¥ < 1 as illustrated in
Fig.2. This classical stationary-phase approximation, considered furthermore, is not valid in the vicinity of the
cusp ¥ = £cysp Or asymptote lines 1) = £1qsymp, i.€. is only valid strictly inside the cusp or the asymptote
wedge. Like the far-field stationary-phase analytical approximation, the Filon numerical integration rule in
Filon (1928) for rapidly oscillating integrands is not suited in the nearfield. Moreover, this integration rule is
not well suited for the case when points of stationary phae are present.

2 STATIONARY PHASE APPROXIMATION

As is noted in Kelvin’s theory, for large values of h, where the trigonometric function F oscillates rapidly,
the dominant contributions to the integral (6) stem from points where the phase ¢ is stationary, or points where
¢ =dyp/dk = 0. Expression (2) and (3) for the phase function ¢ yields

¢ = o cosyp + B sinep (9)

where

3 <dvksech2(dvk) + tanh(d"k) | 2k — d"ksech®(d" k) - tanh(dvk)> 10)

2/k tanh(d" k) ’ 2/k(k — tanh(dV k))
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Fig. 3: Variations of the phase function’s derivative ¢’(k, ) within the range 0 < k < 30 for four ray angles
1 =5° 1 =20°, ¢ = 35° and ¢ = 55° in two water depth dV = 0.625 (left) and d" = 1.25 (right).

Fig.3 illustrates the derivative of phase function ¢’ within the range 0 < k < 30 for four ray angles ¢ = 5°,
Y = 20°, 1 = 35° and ¢ = 55°, in two water depth d¥ = 0.625 (left) and dV = 1.25 (right).

As we can see for d¥ < 1 and ¥ < Yasymp there is one root k4 for ¢’ = 0, and under this circumstances
only divergence waves can be found in the wave pattern generated by a ship. As for ¥ > ¥qsymp there is no
root for ¢’ = 0 and ¢’ takes to the minimum at k& = 0. So ideally, there should be no waves in the very far
field out of the wake angle ¥qsymp. In the case of dV > 1, when ¢ < Yeusp there are two roots ET and kP,
which correspond to the transverse and divergent waves respectively, for ¢’ = 0. And when ¥ = tcysp, there is
only one root k¢ for ¢’ = 0, or we can say k7 = kP where wavelength of transverse and divergent waves equal.
As for ¢ > 1eusp, there is no root for ¢’ = 0 and ¢’ takes to the minimum at k¢ where " = 0. As we can
see, the conclusions for d¥ > 1 are similar to the case in deep water and the Yeusp approaches the Kelvin angle
P~ 19°28' with inscreasing of d¥. Generally, as mensioned before, we regard it as deep water when d¥ > 3.

3 IMPLEMENTATION AND CONCLUSION

Considering the fact that the dominant contributions of the Fourier integral (6) stem from points of stationary
phase, where ¢’ = 0. The trigonometric function F, defined by (4), can then be modified as

F = ¢ihe—(hAg/2nm)* (11)
with
lp(k) — (k)] if dV <1 and ¥ < Yasymp
Ap= o(k) — »(0)] if d" <1 and ¢ > Pasymp (12
min(|p(k) — oK), [e(k) — @(kP)]) if & > 1 and ¢ < Yeusp
lo(k) — (k)| if d > 1 and ¥ > Yeusy

where kA,kT,kD ,kc,dv are defined hereinbefore and ©gsymp, Ycusp are illustrated in Fig.2. n determined
the affected domain of the modified term. Specifically, 1% < E/E < 99% when hAe varies from 0.63n7 to
2.92n7. Within the range 0 < hAp < 0.63nm, the modified term rarely affect the trigonometric elementary
wave function E. As a result, ' = E in the vicinity of the stationary phase points and with a proper value of
n, the numerical calculation accuracy of the Fourier intergral (6) can be well guaranteed. And inside the band
of 0.63nm < hAp < 2.92n7, the modified function E is smoothly decayed from function E to 0. It is obvious
that if a larger power number of the modified term hAp/2n7 is chosen, instead of 4 now, the band will become
narrower. here for simplicity we just take 4 as an example to illustrate the main spirit of our method. When
hAy is greater than 2.92nmw, oscillations of the trigonometric function E are almost damped. As we know, in
the far field where h — oo the funtion E oscillates rapidly, thus accurate numerical evaluation of the Fourier
integral (6) requires a huge number of integration points, which may yield badly low computing efficiency. So
with the help of the modified function (11), which damps the oscillatory part of the function E, the Fourier
integral (6) can be calculated efficiently and even more accurately.

As we can see, the representation of the modified trigonometric function Eis quite simple that only one
parameter n need determined. The modified trigonometric function F ~ FE in the vicinity of the stationary
phase points where ¢’ = 0 or points where ¢” = 0 or points k& = 0 as is depicted in (12). And due to the
existence of h in the term hAyp, the modified function (11) is practically identical to the original function (4)
in the near field. So the dominant parts, that contribute to the Fourier intergral (6), in function (4) are not
modified and therefore guarantee the accuracy the numerical evaluation. As for the rapidly oscillatory parts



The 32nd International Workshop on Water Waves and Floating Bodies, Dalian, China, 23-26 April, 2017.

of the trigonometric function E that do not contribute to the Fourier integral (6) are damped by the modified
function E that yield computational efficiency without negatively affecting accuracy. The effectiveness of the
modified function with n = 4 are demonstrated in Fig.4 and Fig.5. Furthermore, the modified function F,
defined by (11), for practical numerical evaluation of ship waves in finite water depth is much simpler than
the representation given in Zhang (2015) for deep water. As is mentioned before, with increasing of d¥ the
finite water cases will develope into deep water cases. So the modification made in this paper can be also used
to calculate near-field and far-field ship waves in deep water. Fig.6 illustrate ship waves of the Wigley hull
calculated by equation (6) with E replaced by E in three water depth from shallow d* = 0.625 to deep d" = 3
at Froude number F' = 0.3. It shows the method’s applicability to calculate ship waves in near-field and far-field

both for finite and infinite water depth.
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Fig. 4: Real parts of the trigonometric function E defined by (4) and the related modified function E defined

by (11) for h = 5,25,100 and ¢ = 5°,20°, 35°, 50° with d¥ = 0.625
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Fig. 5: Real parts of the trigonometric function E defined by (4) and the related modified function E defined
by (11) for h = 5,25,100 and v = 5°,20°,35°,50° with d¥ = 1.25

Fig. 6: Ship waves generated by a Wigley hull at Froude number F' = 0.3 in three water depth.
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