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1 Introduction

Wave breaking plays an important role in marine hydrodynamics, wave-structure interac-
tion, air-sea interaction, surf zone dynamics, and nearshore sediment transport, Several three-
dimensional (3D) two-phase flow models have been developed to study 3D breaking waves in a
periodic space domain (Lubin et al., 2006), over a plane beach (Lakehal & Liovic, 2011) and over
a complex topography (Xie, 2015), which have provided much insight into the kinematics and
dynamics of breaking waves, including the overturning jet and the subsequent splash-up pro-
cess. Previous investigations have greatly improved our knowledge of breaking waves, However,
little attention has been given for the numerical study on the 3D wave-structure interaction
over a slope. In this study, a 3D two-phase flow model with adaptive unstructured meshes
is developed to investigate 3D breaking wave interaction with a vertical cylinder along a con-
stant sloping beach, which can provide detailed information on the impact force and energy
dissipation during wave breaking.

2 Mathematical Model

A multi-fluid modelling framework has been developed based on the multi-component modelling
approach with information on interfaces embedded into the continuity equations. In two-phase
flows, let αi be the mass fraction of phase i, where i = 1, 2, the density and dynamic viscosity
of phase i are ρi and µi, respectively. A constraint on the system is:

2∑
i=1

αi = 1. (1)

For each fluid component i, the conservation of mass may be defined as,

∂

∂t
(αi) +∇ · (αiu) = 0, i = 1, 2, (2)



and the equations of motion of an incompressible fluid may be written as:

∂(ρu)

∂t
+∇ · (ρu⊗ u) = −∇p+∇ · [µ(∇u +∇Tu)] + ρg + σκnδ, (3)

where t is the time, u is velocity vector, p is the pressure, the bulk density is ρ =
∑2

i=1 αiρi,
the bulk dynamic viscosity is µ =

∑2
i=1 αiµi, g is the gravitational acceleration vector, σ is the

surface tension coefficient, κ = ∇ ·n is the interfacial curvature, n is the interface unit normal,
and δ is the Dirac delta function.

3 Numerical Method

In the present study, a transient, mixed, control-volume and finite-element formulation is used
to discretise the governing equations (Equation 2 and Equation 3). A finite volume discreti-
sation of the continuity equations and a linear discontinuous Galerkin (DG) (Pavlidis et al.,
2016) discretisation of the momentum equations are employed with backward Euler time step-
ping. Within each time-step, the equations are iterated upon using a projection-based pressure
determination method until all equations are simultaneously balanced. The main numeri-
cal framework includes a finite element type (P1DG-P2) for multi-fluid flow problems, which
ensures exact balance between buoyancy force and pressure gradient. The framework also
features a novel interface capturing scheme based on compressive control volume advection
method (Pavlidis et al., 2016), involving a high-order accurate finite element method to obtain
fluxes on the control volume boundaries, where these fluxes are subject to flux-limiting using
a normalised variable diagram approach to obtain bounded and compressive solutions for the
interface. The implementation of capillary/surface tension force in the framework using an
unstructured mesh minimises spurious velocities often found in interfacial flows (Xie et al.,
2016). Finally, use of anisotropic unstructured mesh adaptivity (Pain et al., 2001) allows the
grid resolution to be concentrated in relatively important regions, such as the vicinity of in-
terfaces, while lower resolution can be used in other regions; this leads to a significant gain in
computational efficiency without sacrificing accuracy.

4 Results and Discussion

A three-dimensional solitary breaking wave over a constant slope is investigated here. In the
computation, the origin of the coordinates is located at the still water level in the centre of
the toe of the slope and all lengths are normalized by the water depth D = 0.3048 m. The
compuational setup is similiar to the case for a 3D breaking wave without a cylinder in Xie
(2015), in which the slope is 1:15 and the incident plane solitary wave with the ratio of wave
height to water depth is H/D = 0.45. A vertical cylinder with a diameter of d/D = 0.33 is
considered here and it is located at a distance of x = 12.5D from the toe of the slope. The
computational domain, which has a length of 19.75D, width of 1.3D, and height of 1.75D, is
discretized by an adaptive fully-unstructured mesh, with minimum meshes of ∆xmin/D = 0.02,
∆ymin/D = 0.02 and ∆zmin/D = 0.05 in the steamwise, vertical and spanwise directions,
respectively.

Figure 1 shows snapshots of detailed views of the solitary wave before, during and after
wave breaking. Before wave breaking, it can be seen that the wave crest becomes steep due
to the shoaling effect (figure 1(a)). A typical three-dimensional overturning jet just ahead of
the cylinder can be seen in figure 1(b) during wave breaking. The breaking wave impacts with



(a) before wave breaking

(b) during wave breaking

(c) after wave breaking

Figure 1: Detailed views of the water wave surface before (a), during (b) and after (c) wave
breaking. Left pannel shows the water surfaces colored based on local values of y/D and right
pannel shows the fully-unstructured mesh corresponded to the left pannel along three slices.



the vertical cylinder and 3D complex plunging jet is developed in figure 1(c). The adaptive
fully-unstructured meshes are also shown in figure 1 and it can be seen that finer mesh is
used in the vicinity of the interface and the region near the cylinder whereas coarser mesh is
used away from the interface. This has the advantage of reducing computational effort without
sacrificing accuracy. More detailed results of the kinematics and dynamics of 3D breaking waves
interaction with the vertical cylinder will be presented at the workshop.
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