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Highlights

The Green function of the theory of diffraction radiation of time-harmonic waves by an offshore structure, or a ship at low speed, in deep water
is considered. The Green function G and its gradient ∇G are expressed in the usual manner as the sum of three components that correspond to
the fundamental free-space singularity, a non-oscillatory local flow, and waves. Simple approximations that only involve elementary continuous
functions (algebraic, exponential, logarithmic) of real arguments are given for the local flow components in G and ∇G. These approximations are
global approximations valid within the entire flow region, rather than within complementary contiguous regions as can be found in the literature.

1. Introduction

Diffraction radiation of time-harmonic water waves by an offshore
structure, or a ship at low speed, within the classical framework of lin-
ear potential flow theory and the Green function method, is routinely
used to predict added-mass and wave-damping coefficients, motions,
and wave loads. The Green function, which represents the velocity
potential due to a pulsating source at a singular point under the free
surface as is well known, is an essential element of this method. Ac-
cordingly, the Green function has been studied in a broad literature,
especially for the simplest case of deep water that is considered here.

The Green function G can be expressed as the sum of the fun-
damental free-space singularity and a flow component that accounts
for free-surface effects. Moreover, this free-surface component is
commonly decomposed into a wave component W that represents the
waves radiated by the pulsating source, and a non-oscillatory local
flow component L. This basic decomposition into a wave and a local
flow component is not unique. Indeed, three alternative decomposi-
tions and related single-integral representations of the Green function
G are given in Noblesse (1982).

Several alternative mathematical representations and approxima-
tions of G and ∇G that are well suited for numerical evaluation can
be found in the literature. In particular, complementary near-field and
far-field asymptotic expansions and Taylor series are given in Mar-
tin (1980), Noblesse (1982) and Telste & Noblesse (1986). Several
practical approximate methods for computing G and ∇G have also
been given. These alternative methods include polynomial approxima-
tions within complementary contiguous flow regions, given in New-
man (1984a,1985), Wang (1992) and Zhou et al. (1999), and table
interpolation associated with function and coordinate transformations,
given in Ba et al. (1992) and Ponizy et al. (1994). Other useful practi-
cal methods can be found in the literature, notably in Peter & Meylan
(2004), Yao et al. (2009), D’elı́a et al. (2011) and Shen et al. (2015).

Accuracy and efficiency are essential requirements of methods for
numerically evaluating G and∇G, and these important aspects are con-
sidered in the practical approximate methods listed in the foregoing.
Indeed, the alternative methods proposed in these studies provide ac-
curate and efficient methods for computing G and ∇G.

Numerical errors associated with potential-flow panel methods
stem from several well-known sources, including:

(i) discretization of the wetted hull surface of an offshore structure
or a ship; i.e. the number and the type (flat or curved) of panels,

(ii) approximation of the variations (piecewise constant, linear,
quadratic, or higher-order) of the densities of the singularity (source,
dipole) distributions over a surface panel,

(iii) numerical integration of the Green function and its gradient
over a (flat or curved) panel, and

(iv) numerical evaluation of the Green function and its gradient.

Moreover, the Green function G (as well as its gradient ∇G) is
given by the sum of the fundamental free-space singularity, a wave

component W and a non-oscillatory local flow component L as was al-
ready noted. Thus, numerical errors that stem from an approximation
of the local flow components in the representations of G and ∇G are
only one part among several sources of errors associated with panel
methods. While the ideal approximations to G and ∇G are highly ac-
curate and efficient as well as very simple, this ideal goal is hard to
reach in practice because accuracy, efficiency and simplicity are com-
peting requirements.

The level of accuracy that is actually required for useful practical
approximations to G and ∇G therefore is a fairly complicated issue.
This issue is partly considered in Wu et al. (2016a) for the similar the-
ory of steady ship waves (linear potential flow around a ship hull that
advances at a constant speed in calm water). Specifically, the errors
due to a simple analytical approximation to the local flow component
L in the Green function for steady ship waves are considered in that
study. This approximate local flow component L, given in Noblesse
et al. (2011), is very simple and highly efficient, but not particularly
accurate. Yet, this simple relatively crude approximation to the Green
function for steady ship waves is found in Wu et al. (2016a) to yield
predictions of sinkage, trim and drag that do not differ appreciably
from the predictions obtained if the Green function is computed with
high accuracy. This finding suggests that highly accurate approxima-
tions to the local flow components in the Green function G and its
gradient ∇G for the theory of wave diffraction radiation similarly may
not be necessary for practical purposes.

The approximations to the local flow components in the represen-
tations of G and ∇G for wave diffraction radiation considered in Wu et
al. (2016b) are given here. These approximations are based on a prag-
matic hybrid approach that combines numerical approximations with
near-field and far-field analytical expansions, in a manner similar to
that used in Noblesse et al. (2011) for the Green function of the theory
of ship waves. The approximations given here are valid within the en-
tire flow region, i.e. are global approximations, unlike the approxima-
tions for complementary contiguous flow regions that can be found in
the literature. The approximations to the local flow components given
here only involve elementary continuous functions (algebraic, expo-
nential, logarithmic) of real arguments, and provide an efficient and
particularly simple method for numerically evaluating the Green func-
tion G, and its gradient ∇G , for diffraction radiation of time-harmonic
waves in deep water. The global approximations to the local flow com-
ponents in G and ∇G given here are similar to, but considerably more
accurate than, the approximations given in Wu et al. (2016c).

2. Basic integral representations

A Cartesian system of coordinates X ≡ (X,Y,Z) is used. The Z axis
is vertical and points upward, and the undisturbed free surface is taken
as the plane Z = 0. Diffraction radiation of time harmonic waves with
radian frequency ω and wavelength λ = 2πg/ω2, where g denotes the
gravitational acceleration, is considered. Nondimensional coordinates

x ≡ (x, y, z) ≡ (X,Y,Z)ω2/g (1)
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are defined.

The Green function G(x, x̃) corresponds to the spatial component
of a nondimensional velocity potential

Re [G(x, x̃) e−iωT ] (2)

where T denotes time. Expression (2) represents the potential of the
flow created at the point x ≡ (x, y, z ≤ 0) by a pulsating source located
at the point x̃ ≡ (x̃, ỹ, z̃ < 0), or by a flux through the free surface at the
point x̃ ≡ (x̃, ỹ, z̃ = 0).

The nondimensional distances between the flow-field point x and
the source point x̃ or its mirror image x̃1 ≡ (x̃, ỹ,−z̃) with respect to the
undisturbed free-surface plane z = 0 are denoted as r and d , and are
given by

r ≡
√

(x − x̃)2 + (y − ỹ)2 + (z − z̃)2 (3a)

d ≡
√

(x − x̃)2 + (y − ỹ)2 + (z + z̃)2 (3b)

The horizontal and vertical components of the distance d between the
points x and x̃1 are given by

0 ≤ h ≡
√

(x − x̃)2 + (y − ỹ)2 v ≡ z + z̃ ≤ 0 (4)

The Green function G is expressed as

4πG = −1/r + L + W (5)

where −1/r is the fundamental free-space Green function, and L and
W represent a local flow component and a wave component that ac-
count for free-surface effects. The component L corresponds to a non-
oscillatory local flow and the component W represents circular surface
waves radiated by the pulsating singularity located at the source point
x̃ . The basic decomposition (5) into a local flow and waves is non
unique, as was already noted. Three alternative decompositions and
related integral representations are given in Noblesse (1982).

The so-called near-field integral representation in Noblesse (1982)
is considered here. The wave component W in this representation is
given by

W(h, v) ≡ 2π [H̃0(h) − i J0(h)] ev (6)

where H̃0(·) and J0(·) denote the zeroth-order Struve function and the
zeroth-order Bessel function of the first kind. The corresponding local
flow component L is given by

L(h, v) ≡ −
1
d
−

4
π

∫ π
2

0
Re eME1(M) dθ where M ≡ v + ih (7)

and E1(·) is the complex exponential integral function.

The gradient ∇G ≡ (Gx ,Gy ,Gz ) of the Green function G is ex-
pressed in Noblesse (1982) as

4πGz ≡
z − z̃

r3 + Lz + W where Lz =
v
d3 −

1
d

+ L (8a)

4πGh ≡
h
r3 + Lh + Wh where Lh =

h
d3 + L∗ (8b)

4πGx ≡ Gh
x − x̃

h
and 4πGy ≡ Gh

y − ỹ
h

(8c)

The wave component Wh in (8b) is given by

Wh(h, v) ≡ 2π [2/π − H̃1(h) + i J1(h)] ev (9)

where H̃1(·) and J1(·) denote the first-order Struve function and the
first-order Bessel function of the first kind. The local flow component
L∗ in (8b) is given by

L∗(h, v) ≡
4
π

∫ π
2

0
Im[eME1(M) − 1/M] cosθ dθ (10)

where M is defined in (7).

The exponential function ev and the Bessel and Struve functions
in expressions (6) and (9) for the wave components W and Wh are
infinitely differentiable. Moreover, several practical and efficient al-
ternative approximations for the Bessel and Struve functions are given
in the literature; notably in Hitchcock (1957), Abramowitz & Stegun
(1965), Luke (1975) and Newman (1984b).

3. Near-field and far-field approximations

The variables 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 defined as

α ≡ −v/d ≡
√

1− β2 β ≡ h/d ≡
√

1− α2 (11)

are used hereafter. The related variable 0 ≤ σ ≤ 1 defined as

σ ≡ h/(d − v) ≡ β/(1+ α) ≡
√

(1− α)/(1+ α) (12)

is also used in this section and the next.

The behaviors of the local flow component L defined by the inte-
gral representation (7) in the near-field and far-field limits d → 0 and
d → ∞ are considered in Noblesse (1982). In particular, expressions
(7.7), (7.8), (7.22) and (7.23) in Noblesse (1982) yield the near-field
approximation

L = −
1
d

+ 2
(
log

d − v
2

+ γ

)
+ 2v

(
log

d − v
2

+ γ − 1
)

+ 2h (σ − 2) + O(d2 logd) as d → 0 (13)

where γ = 0.577 . . . is Euler’s constant. For α , 0, expression (6.14)
in Noblesse (1982) yields the far-field approximation

L =
1
d

+
2α
d2 −

2− 6α2

d3 + O
(

1
d4

)
as d → ∞ if α , 0 (14a)

For α = 0, Eqs (6.8) in Noblesse (1982) and (12.1.30) in Abramowitz
& Stegun (1965) yield the far-field approximation

L = −
3
d

+
2
d3 + O

(
1
d5

)
as d → ∞ if α = 0 (14b)

Expression (8b) and the partial derivatives, with respect to h, of
expressions (7.7), (7.8), (7.22) and (7.23) in Noblesse (1982) yield the
near-field approximation

L∗ =
2σ
d

+ 2 (σ − 2) − h
(
log

d − v
2

+ γ + σβ + 2α −
3
2

)
− 4v + O(d2 logd) as d → 0 (15)

For 0 < α < 1, expressions (8b) and (14a) similarly yield the far-field
approximation

L∗ = −
2β
d2 −

6αβ
d3 + O

(
1
d4

)
as d → ∞ if 0 < α < 1 (16a)

One has L∗ ≡ −4ev in the special case α = 1. In the special case
α = 0, expression (14b) and Eq. (12.1.31) in Abramowitz & Stegun
(1965) yield the far-field approximation

L∗ =
2
d2 + O

(
1
d4

)
as d → ∞ if α = 0 (16b)
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4. Approach

The infinite flow region 0 ≤ h < ∞,−∞ < v ≤ 0 is mapped onto
the unit square

0 ≤ ρ ≡ d/(1+ d) ≤ 1 0 ≤ β ≡ h/d ≤ 1 (17a)

via the relations

d = ρ/(1− ρ) h = βd v = −
√

1 − β2 d (17b)

As was already noted in the introduction, a pragmatic hybrid approach
similar to that used in Noblesse et al. (2011) for the Green function of
steady ship waves is adopted here. This approach combines numerical
approximations with the near-field and far-field analytical expansions
given in the previous section.

4.1. The function L

The local flow component L defined by (7) is expressed as

L = −
1
d

+
2P

1+ d3 + 2L′ (18a)

where P ≡ ev

(
log

d − v
2

+ γ − 2d2
)

+ d2 − v (18b)

and L′ ≡
−P

1+ d3 −
2
π

∫ π
2

0
Re eME1(M) dθ (18c)

Moreover, γ in (18b) is Euler’s constant. The decomposition (18a)
expresses the local flow L as the sum of two dominant terms that are
defined analytically and are related to the near-field and far-field ex-
pansions (13) and (14), and the correction 2 L′. The correction term
2L′ defined by (18c) is numerically approximated below.

Eqs (13), (18a) and (18b) yield the near-field approximation

L′ ∼ d (σβ − 2β) as d → 0 (19)

Eqs (14), (18a) and (18b) yield the far-field approximations

L′ ∼
1
d3 (3α2 − 1) as d → ∞ if α , 0 (20a)

L′ ∼ −
1
d3

(
log

d
2

+ γ − 1
)

as d → ∞ if α = 0 (20b)

The near-field approximations (13) and (19) and the far-field ap-
proximations (14) and (20) yield

L′/L = O(d2) as d → 0 (21a)

L′/L = O(1/d2) as d → ∞ if α , 0 (21b)

L′/L = O(log d/d2) as d → ∞ if α = 0 (21c)

These relations show that L′ � L in both the near field d → 0 and
the far field d → ∞. Expressions (17) and the asymptotic approxima-
tions (19) and (20) show that the function L′ is asymptotically similar
to ρ (1 − ρ)3 in the limits ρ→ 0 and ρ→ 1.

An approximation to the function L′ of the form

L′(ρ, β) ≈ ρ (1− ρ)3 R where (22a)

R ≡ (1− β) A − βB −
αC

1+ 6αρ (1− ρ)
+ β (1− β)D (22b)

is considered in Section 5. The terms A(ρ), B(ρ), C(ρ) and D(ρ) in
(22b) are polynomials in ρ.

4.2. The function L∗
The local flow component L∗ associated with the horizontal deriva-

tive Gh of the Green function G in (8b) is now considered. This flow
component, defined by (10), is expressed as

L∗ =
2 P∗

1+ d3 − 4 Q∗ + 2 L′∗ (23a)

where


P∗ ≡

β + h
d − v

− 2β + 2evd − h

Q∗ ≡ e−d (1− β)
(
1+

d
1+ d3

) (23b)

and L′∗ ≡
−P∗

1+ d3 + 2 Q∗ +
2
π

∫ π
2

0
Im

[
eME1(M) −

1
M

]
cosθ dθ (23c)

The decomposition (23a) expresses the local flow L∗ as the sum of two
dominant terms and the correction 2L′∗ defined by (23c). This correc-
tion term is numerically approximated further on.

Eqs (15), (23a) and (23b) yield the near-field approximation

L′∗ ∼ −d
[
β

2

(
log

d − v
2

+ γ + σβ + 2α −
7
2

)
− 2α + 2

]
as d → 0 (24)

Eqs (16), (23a) and (23b) yield the far-field approximation

L′∗ ∼
1
d3 (2β − σ − 3αβ) as d → ∞ if α , 1 (25)

Along the vertical axis α = 1, one has L′∗ ≡ 0.

The near-field approximations (15) and (24) and the far-field ap-
proximations (16) and (25) yield

L′∗/L∗ = O(d2 log d) as d → 0 (26a)

L′∗/L∗ = O(1/d) as d → ∞ (26b)

where the identity L′∗ ≡ 0 if α = 1 was used. The relations (26) show
that one has L′∗ � L∗ in both the near field d → 0 and the far field
d → ∞. Eqs (17) and the asymptotic approximations (24) and (25)
show that the function L′∗ is asymptotically similar to ρ (1− ρ)3 in both
the limits ρ→ 0 and ρ→ 1.

An approximation to the function L′∗ of the form

L′∗(ρ, β) ≈ ρ (1− ρ)3 R∗ where (27a)

R∗ ≡ βA∗ − (1− α) B∗ + β (1− β)ρ (1− 2ρ)C∗ (27b)

is considered in the next section. The terms A∗(ρ), B∗(ρ) and C∗(ρ) in
(27b) are polynomials in ρ.

5. Practical approximations
The local flow components L and L∗ defined by the integral repre-

sentations (7) and (10) and the related local flow components Lz and
Lh are approximated as

L ≈ La and L∗ ≈ La
∗ (28a)

Lz ≈ La
z ≡

v
d3 −

1
d

+ La and Lh ≈ La
h ≡

h
d3 + La

∗ (28b)

Hereafter, La , La
∗ , La

z and La
h denote approximations to the local flow

components L, L∗ , Lz and Lh , respectively.

Expressions (18a), (18b) and (22) define the approximate local
flow component La as

La ≡ −
1
d

+
2 P

1+ d3 + 2ρ (1− ρ)3 R (29a)

where P and R are defined by (18b) and (22b) as

P ≡ ev

(
log

d − v
2

+ γ − 2d2
)

+ d2 − v (29b)

R ≡ (1− β) A − βB −
αC

1+ 6αρ (1− ρ)
+ β (1− β) D (29c)
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Here, γ = 0.577 . . . is Euler’s constant, and α, β, ρ are defined by (11)
and (17a). Moreover, the polynomials A(ρ), B(ρ), C(ρ) and D(ρ) in
(29c) are defined as

A ≡ 1.21 − 13.328ρ + 215.896ρ2− 1763.96ρ3 + 8418.94ρ4

− 24314.21ρ5 + 42002.57ρ6− 41592.9ρ7 + 21859ρ8

− 4838.6ρ9 (29d)

B ≡ 0.938 + 5.373ρ − 67.92ρ2 + 796.534ρ3− 4780.77ρ4

+ 17137.74ρ5− 36618.81ρ6 + 44894.06ρ7

− 29030.24ρ8 + 7671.22ρ9 (29e)

C ≡ 1.268 − 9.747ρ + 209.653ρ2− 1397.89ρ3 + 5155.67ρ4

− 9844.35ρ5 + 9136.4ρ6− 3272.62ρ7 (29f)

D ≡ 0.632 − 40.97ρ + 667.16ρ2− 6072.07ρ3 + 31127.39ρ4

− 96293.05ρ5 + 181856.75ρ6− 205690.43ρ7

+ 128170.2ρ8− 33744.6ρ9 (29g)

Expressions (23a), (23b) and (27) define the approximate local
flow component La

∗ as

La
∗ ≡

2P∗
1+ d3 − 4Q∗ + 2ρ (1− ρ)3 R∗ (30a)

where P∗ , Q∗ and R∗ are defined by (23b) and (27b) as

P∗ ≡
β + h
d − v

− 2β + 2evd − h (30b)

Q∗ ≡ e−d (1− β)
(
1+

d
1+ d3

)
(30c)

R∗ ≡ βA∗ − (1− α) B∗ + β (1− β)ρ (1− 2ρ)C∗ (30d)

The polynomials A∗(ρ), B∗(ρ) and C∗(ρ) in (30d) are defined as

A∗ ≡ 2.948 − 24.53ρ + 249.69ρ2− 754.85ρ3− 1187.71ρ4

+ 16370.75ρ5− 48811.41ρ6 + 68220.87ρ7− 46688ρ8

+ 12622.25ρ9 (30e)

B∗ ≡ 1.11 + 2.894ρ − 76.765ρ2 + 1565.35ρ3− 11336.19ρ4

+ 44270.15ρ5− 97014.11ρ6 + 118879.26ρ7

− 76209.82ρ8 + 19923.28ρ9 (30f)

C∗ ≡ 14.19 − 148.24ρ + 847.8ρ2− 2318.58ρ3 + 3168.35ρ4

− 1590.27ρ5 (30g)

The approximations La and La
∗ given by (29) and (30) hold within

the entire flow region 0 ≤ d , and only involve elementary continuous
functions (algebraic, exponential, logarithmic) of real arguments. The
errors associated with the approximations (29) and (30) are analyzed
in Wu et al. (2016b). This analysis shows that the approximations (29)
and (30) are sufficiently accurate for practical purposes.

6. Conclusion

The Green function G in the classical theory of wave diffraction ra-
diation by an offshore structure, or a ship at low forward speed, in deep
water is expressed as the sum of the fundamental free-space Green
function −1/r, a non-oscillatory local flow component L and a wave
component W , in the usual manner. The gradient of G is similarly ex-
pressed as the sum of three basic components. The wave components
W and Wh in these basic decompositions of G and its gradient ∇G
are expressed in terms of real functions of one variable, specifically
the exponential function ev, the Bessel functions J0(h) and J1(h) and
the Struve functions H̃0(h) and H̃1(h). These functions are infinitely
differentiable and can be readily evaluated; e.g. Hitchcock (1957),
Abramowitz & Stegun (1965), Luke (1975), Newman (1984b).

The approximations to the local flow components in the expres-
sions for G and ∇G given here are global approximations that are valid
within the entire flow region, unlike the approximations for comple-
mentary contiguous flow regions that can be found in the literature, and
only involve elementary continuous functions (algebraic, exponential,
logarithmic) of real arguments. The analysis of the errors associated
with these approximations to the local flow components that is given
in Wu et al. (2016b) shows that the approximations are sufficiently
accurate for practical purposes. The global approximations given here
provide a particularly simple and highly efficient way of numerically
evaluating the Green function and its gradient for diffraction radiation
of time-harmonic waves in deep water.
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