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HIGHLIGHT

A generalized pressure equation, in form of a Laplace equation with complex coefficients obtained, is
derived from linearized Navier Stokes equations through homogenization theory. Free surface wave
scattering around a two-dimensional platform is investigated by considering the viscous effects due to
pile array.

1 INTRODUCTION

Very large scale floating structures supported by small diameter piles are a common form of practical
structures in coastal and offshore engineering, e.g. offshore airports, large storage facilities and wave
energy converters (Kashiwagi, 2000; Singh, 2014). The scattering problems of non-viscous water waves
by multiple bodies have been well resolved using different methods in context of potential flow theory
(Kagemoto& Yue, 1986; Spring & Monkmeyer, 1974; Simon, 1982; Linton & Evans, 1990). As the
number of piles dramatically increases and more realistic flow conditions need to be considered, viscous
effects may significant affect the wake regions of each members in the pile array and dissipate the wave
energy along the floating bodies. In this study, we propose a semi-analytical approach to examine the
viscous effects on wave scatterings around a two dimensional platform supported by arrays of a large
number of piles, as shown in Fig.1.

2 STATEMENT OF THE PROBLEM

We consider a water region of finite and constant depth h′. Infinitesimal waves of characteristic
frequency ω′ and amplitude A′ enter region beneath the platform from the open sea. k′0 = ω′2/g is the
characteristic macro-length scale. The water depth is comparable with the wave length, k′0h

′ = O(1),
which is suitable for wave length about 100 meters in a water region with depth of 20 meters. The
width of the platform is 2L′ in x-direction. The draft is D′. Over a large horizontal area 2L′, vertical
cylinder plies of diameter a′ are built at the horizontal separation of O(`′), where the cylinder spacing
is much smaller than the typical wave length, i.e. k′0`

′ � 1.
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Figure 1: Illustration of long platform supported by piles for 2D problem

The incoming waves dictate the scales of the dynamics pressure p′ ∼ ρgA′. Using the micro length
`′ and h′0 to normalize the spatial coordinates we introduce the following change of variables

xi = x′i/`
′, Z = k′0z

′, t = ω′t′, h = k′0h
′, p = p′/ρgA′, (ui, w) = (u′i, w

′)/ω′A′, ζ = ζ′/A′ (1)
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2.1 Open water region
In the open water region away from the platform, we ignore turbulence and viscosity. The dimension-
less potential function φ satisfies the Laplace equation ∇2φ = 0. Considering harmonic waves, linearity
of the problem allows separation of the time factor as (φ, p) = (Φ, P )e−it. The incoming wave is from
X = −∞ towards the platform located between X = ±L. Considering an incident wave in form of
ζ = Aeik(X+L)−it. In terms of eigenfunctions, the potential in the exterior regions, Φ = ΦI + ΦR and
Φ = ΦT in each sides, can be expresses as

ΦI = −f0e
−k0(X+L), ΦR = −

∞∑
n=0

cnfne
kn(X+L) ΦT = −

∞∑
n=0

bnfne
−kn(X−L) (2)

with k0 = −ik, kn tan knh = −k tanh kh, n = 1, 2, · · · . c0 and b0 represent the reflection and transmission
coefficients, respectively.

2.2 Viscous flow region beneath the platform
We assume constant eddy viscosity νe for turbulent flow inside cylinder array region. For infinitesimal
waves, the three dimensional flows are governed by the linearized Reynolds equations. Then the
normalized continuity equation reads:

∂ui

∂xi
+ ε

∂w

∂Z
= 0 (3)

where we define ε ≡ k′0`
′ = ω′2`′/g � 1 is a small ratio of micro-to-macro lengths, and σ = νe/ω

′`′2 =

O(1). The dimensionless horizontal and vertical momentum equations are

ε
∂ui

∂t
= − ∂p

∂xi
+ σε

(
∂2ui

∂xj∂xj
+ ε2

∂2ui

∂Z2

)
,

∂w

∂t
= − ∂p

∂Z
+ σ

(
∂2w

∂xj∂xj
+ ε2

∂2w

∂Z2

)
(4)

Two-scale expansions are introduced, xi → xi+εXi, ui → u
(0)
i +εu

(1)
i , w → w(0) +εw(1), p→ p(0) +εp(1).

In view of linearity of Eqs (4), we assume the following solution for the micro-scale flow in the cell

ũ
(0)
i = −Kij(~x)

∂p̃(0)

∂Xj
, p̃(1) = −Aj(~x)

∂p̃(0)

∂Xj
, w̃(0) = −W (~x)

∂p̃(0)

∂Z
(5)

Substitute these assumptions into (3) and (4), we have

∂Kij

∂xj
= 0, −iKij = δij + σ

∂2Kij

∂xk∂xk
− ∂Aj

∂xi
, xi ∈ Ωf (6)

(6) must be solved in the fluid part Ωf in the unit cell of area Ω, subjecting to the boundary conditions
on the cylinders Kij = 0, xi ∈ SB and periodicity boundaries Kij , Aj : Ω− periodic. For uniqueness,
we require 〈Aj〉 = 0. The leading order of (4) becomes

−iW = 1 + σ
∂2W

∂xj∂xj
, x ∈ Ωf , −h < Z < −D (7)

with boundary conditions W = 0, (xi, Z) ∈ SB and z = −D,−h and W : Ω−periodic, which can
be solved by the finite element method (FEM). Equation (7) is solved in horizontal two-dimensional
space, i.e. W = W (xi), i = 1, 2, and is irrelevant to macro-coordinate Z.

Examples of the FEM results are shown in Fig.2 for the cell problem governed by (6). After
solving the canonical cell problem by FEM, we take the cell average for Kij and W , defined by

〈f〉 =
∫∫

Ωf
fdxdy/Ω. Then we get Darcy’s law 〈ũ(0)

i 〉 = −Kij∂p̃
(0)/∂Xj and the complex permeability

defined by Kij = 〈Kij〉. Similar numerical results for W = 〈W 〉 can be obtained when σ is specified.
For different wave parameters and eddy viscosity, results of K and W are shown in Fig.3.

Leading order velocities 〈ũ(0)
i 〉 and 〈w̃(0)〉 are macro-scale variables relating Xi and Z. Cell average

of continuity equation (3) gives

Ωf

(
∂〈u(0)

i 〉
∂Xi

+
∂〈w(0)〉
∂Z

)
+

∫∫
Ωf

∂u
(1)
i

∂xi
dxdy = 0 (8)

Using Gauss theorem, periodical and no-slip boundary conditions, the integral above is zero. Hence
we obtain the cell averaged continuity equation

∂〈ũ(0)
i 〉

∂Xi
+
∂〈w̃(0)〉
∂Z

= 0 (9)
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(a) Real(K11) (b) Real(K21) (c) Real(A1) (d) Imag(K11) (e) Imag(K21) (f) Imag(A1)

Figure 2: Illustration of FEM solutions for Kij and Aj , j = 1. From numerical results, K = K11 = K22 =

0.3134 + 0.5764i, K12 = K21 = 0. For Aj , we compare the gradient value, we obtained 〈∂A1/∂x〉 = 〈∂A2/∂y〉 =

0.2506 + 0.1416i. K21 represents the y-direction velocity caused by the macro-scale pressure gradient in x-axis.
Parameters are: porosity N = 0.8743, and dimensionless viscous coefficient σ = 0.0259.
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Figure 3: Comparison of magnitude of K and W. σ = νe/ω
′`′2. Taking laboratary values: using constant

νe = 1.0E-3 m2/s, `′ = 8 cm. h′ = 0.5 m. ω′ = 4π, 2π, π s−1, corresponding to kh = 8.05, 2.08, 0.77.

Cell average of horizontal and vertical momentum equations,

−i〈ũ(0)
i 〉 = −N ∂p̃(0)

∂Xi
− αik

∂p̃(0)

∂Xk
, −i〈w̃(0)〉 = −N ∂p̃(0)

∂Z
− β ∂p̃

(0)

∂Z
(10)

where

αik =
1

Ω

∮
ds

[
σ

(
∂Kik

∂xj
+
∂Kjk

∂xi

)
−Akδij

]
nj , β =

σ

Ω

∮
ds
∂W

∂xj
nj (11)

does not depend on the vertical coordinate Z. N = Ωf/Ω = 1− πa2/4`2 is the porosity of the cell. The
values of α11 = α22 = −N − iK, α12 = α21 = 0 and β = −N − iW. Substituting the momentum equations
(10) into the continuity equation (9), we have the general pressure equation in form of the Laplace
equation as

∂

∂Xi

(
K∂p̃

(0)

∂Xi

)
+W ∂2p̃(0)

∂Z2
= 0 (12)

In usual isotropic porous media, where there is no contrast of length scale in all directions, the macro-
scale equation is Laplace equation. Herein xi and Z are in sharp contrast, hence (12) is not isotropic.
K(Xi) and W(Xi) vary with horizontal macro-coordinate, and are irrelevant to vertical coordinate Z.

The value of dimensionless viscosity σ depends on the eddy viscosity coefficient inside the viscous
flow region. A simple energy balance model had been proposed for a similar problem (Mei et al, 2014).
Note from (6), the dimensionless viscosity affects the complex number K. Therefore the turbulent
viscosity νe affects not only the dissipation but also the phase difference between the velocity and the
pressure gradient.

2.3 Matching conditions
For a linear problem, we expect a solution in form of p̃(0) = Pe−it. We require the velocity to be
continuous at X = ±L for −h ≤ Z < −D, and to vanish for −D ≤ Z ≤ 0. At cylinder array region,
the average horizontal velocity is 〈ũ(0)〉. Combing with the definition 〈ũ(0)〉 = −K∂P/∂X, so we have
∂Φ/∂X = −K∂P/∂X for −h ≤ Z < −D and ∂Φ/∂X = 0 for −D ≤ Z < 0. Another matching condition
is continuous of potential or pressure, i.e. iΦ = P for −h ≤ Z < −D.

3 NUMERICAL PROCEDURE

For finite length platform in 2D space, the general solution of (12) P =
∑∞

n=0 Pn is rewritten as P0(X) =

p0X + q0, Pn(X) = pn sinhλnX + qn coshλnX, n = 1, 2, ... with λn = Kn

√
W/K, Kn = nπ/(h−D). pn and
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qn for n = 0, 1, 2, 3... are complex coefficients to be determined from the other boundary conditions.
Using the matching conditions at X = ±L, we can obtained the unknowns through Ritz method
numerically. Convergence tests have been carried out to find the order n in series expansions of Φ and
P . Preliminary verifications of the calculation procedure are examined through comparison with open
water flows by setting K = W = i and the porosity N = 1. To verify present numerical solution, we
compare the numerical results with Stoker’s solution for a thin plate slab with D = 0. By replacing
the value of K, W, and N in the code, we can calculate the full problem straightforward.

4 TRANSMISSION AND REFLECTION

For the case platform without pile array, the phase difference between refection and transmission wave
is (−1)nπ/2 for kn < k < kn+1. When there is pile array, the difference is π/2 for short waves when the
draught is large, e.g. D/h = 0.2 ∼ 0.3. However, the phase difference is zero for infinite long waves.
The phase difference is gradually increase to π/2 when kh increases, as shown in Fig.4. For no piles
cases, the phase angle of transmission waves has a sharp jump π. When pile array is in existence, there
is a smooth transition. The transmission coefficient b0 is smaller in for pile supported platform than
that of no piles, indicating the eddy viscosity can dissipate a lot of wave energy. Due to the existing
of cylinders, the reflection coefficient c0 is larger in cylinder region.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

kh

 

 

Abs(c0)

Abs(b0)

D/h=0.1

D/h=0.2

D/h=0.3

kh

 

 

Arg(c0)

Arg(b0)

0 2 4 6 8 10
−π/2

0

π/2

π

3π/2

D/h=0.1

D/h=0.2

D/h=0.3

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

kh

 

 

Abs(c0)

Abs(b0)

D/h=0.1

D/h=0.2

D/h=0.3

kh

 

 

Arg(c0)

Arg(b0)

0 2 4 6 8 10
−π/2

0

π/2

π

3π/2

D/h=0.1

D/h=0.2

D/h=0.3

(a) platform without pile array (b) platform with pile array

Figure 4: Comparison of reflection and transmission coefficient. L/h = 1.

5 CONCLUSIONS AND FUTURE WORKS

Using homogenization theory, the scattering problem of free surface waves around cylinder arrays and
platform is investigated. Preliminary results of a two dimensional problem are obtained, and viscous
effects on the transmission and reflection coefficients are discussed. The proposed semi-analytical
method can be easily extended to three dimensional problems with complex geometry profile of the
platform. More numerical results will be reported in the conference.
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