2.1 Open water region

In the open water region away from the platform, we ignore turbulence and viscosity. The dimensionless potential function ϕ satisfies the Laplace equation $\nabla^{2} \phi=0$. Considering harmonic waves, linearity of the problem allows separation of the time factor as $(\phi, p)=(\Phi, P) e^{-i t}$. The incoming wave is from $X=-\infty$ towards the platform located between $X= \pm L$. Considering an incident wave in form of $\zeta=\mathcal{A} e^{i k(X+L)-i t}$. In terms of eigenfunctions, the potential in the exterior regions, $\Phi=\Phi_{I}+\Phi_{R}$ and $\Phi=\Phi_{T}$ in each sides, can be expresses as

$$
\begin{equation*}
\Phi_{I}=-f_{0} e^{-k_{0}(X+L)}, \quad \Phi_{R}=-\sum_{n=0}^{\infty} c_{n} f_{n} e^{k_{n}(X+L)} \quad \Phi_{T}=-\sum_{n=0}^{\infty} b_{n} f_{n} e^{-k_{n}(X-L)} \tag{2}
\end{equation*}
$$

with $k_{0}=-i k, k_{n} \tan k_{n} h=-k \tanh k h, n=1,2, \cdots . c_{0}$ and b_{0} represent the reflection and transmission coefficients, respectively.

2.2 Viscous flow region beneath the platform

We assume constant eddy viscosity ν_{e} for turbulent flow inside cylinder array region. For infinitesimal waves, the three dimensional flows are governed by the linearized Reynolds equations. Then the normalized continuity equation reads:

$$
\begin{equation*}
\frac{\partial u_{i}}{\partial x_{i}}+\epsilon \frac{\partial w}{\partial Z}=0 \tag{3}
\end{equation*}
$$

where we define $\epsilon \equiv k_{0}^{\prime} \ell^{\prime}=\omega^{\prime 2} \ell^{\prime} / g \ll 1$ is a small ratio of micro-to-macro lengths, and $\sigma=\nu_{e} / \omega^{\prime} \ell^{\prime 2}=$ $\mathcal{O}(1)$. The dimensionless horizontal and vertical momentum equations are

$$
\begin{equation*}
\epsilon \frac{\partial u_{i}}{\partial t}=-\frac{\partial p}{\partial x_{i}}+\sigma \epsilon\left(\frac{\partial^{2} u_{i}}{\partial x_{j} \partial x_{j}}+\epsilon^{2} \frac{\partial^{2} u_{i}}{\partial Z^{2}}\right), \quad \frac{\partial w}{\partial t}=-\frac{\partial p}{\partial Z}+\sigma\left(\frac{\partial^{2} w}{\partial x_{j} \partial x_{j}}+\epsilon^{2} \frac{\partial^{2} w}{\partial Z^{2}}\right) \tag{4}
\end{equation*}
$$

Two-scale expansions are introduced, $x_{i} \rightarrow x_{i}+\epsilon X_{i}, u_{i} \rightarrow u_{i}^{(0)}+\epsilon u_{i}^{(1)}, w \rightarrow w^{(0)}+\epsilon w^{(1)}, p \rightarrow p^{(0)}+\epsilon p^{(1)}$. In view of linearity of Eqs (4), we assume the following solution for the micro-scale flow in the cell

$$
\begin{equation*}
\widetilde{u}_{i}^{(0)}=-K_{i j}(\vec{x}) \frac{\partial \widetilde{p}^{(0)}}{\partial X_{j}}, \quad \widetilde{p}^{(1)}=-A_{j}(\vec{x}) \frac{\partial \widetilde{p}^{(0)}}{\partial X_{j}}, \quad \widetilde{w}^{(0)}=-W(\vec{x}) \frac{\partial \widetilde{p}^{(0)}}{\partial Z} \tag{5}
\end{equation*}
$$

Substitute these assumptions into (3) and (4), we have

$$
\begin{equation*}
\frac{\partial K_{i j}}{\partial x_{j}}=0, \quad-i K_{i j}=\delta_{i j}+\sigma \frac{\partial^{2} K_{i j}}{\partial x_{k} \partial x_{k}}-\frac{\partial A_{j}}{\partial x_{i}}, \quad x_{i} \in \Omega_{f} \tag{6}
\end{equation*}
$$

(6) must be solved in the fluid part Ω_{f} in the unit cell of area Ω, subjecting to the boundary conditions on the cylinders $K_{i j}=0, x_{i} \in S_{B}$ and periodicity boundaries $K_{i j}, A_{j}: \Omega-$ periodic. For uniqueness, we require $\left\langle A_{j}\right\rangle=0$. The leading order of (4) becomes

$$
\begin{equation*}
-i W=1+\sigma \frac{\partial^{2} W}{\partial x_{j} \partial x_{j}}, \quad x \in \Omega_{f}, \quad-h<Z<-D \tag{7}
\end{equation*}
$$

with boundary conditions $W=0, \quad\left(x_{i}, Z\right) \in S_{B}$ and $z=-D,-h$ and $W: \Omega$-periodic, which can be solved by the finite element method (FEM). Equation (7) is solved in horizontal two-dimensional space, i.e. $W=W\left(x_{i}\right), i=1,2$, and is irrelevant to macro-coordinate Z.

Examples of the FEM results are shown in Fig. 2 for the cell problem governed by (6). After solving the canonical cell problem by FEM, we take the cell average for $K_{i j}$ and W, defined by $\langle f\rangle=\iint_{\Omega_{f}} f d x d y / \Omega$. Then we get Darcy's law $\left\langle\widetilde{u}_{i}^{(0)}\right\rangle=-\mathcal{K}_{i j} \partial \widetilde{p}^{(0)} / \partial X_{j}$ and the complex permeability defined by $\mathcal{K}_{i j}=\left\langle K_{i j}\right\rangle$. Similar numerical results for $\mathcal{W}=\langle W\rangle$ can be obtained when σ is specified. For different wave parameters and eddy viscosity, results of \mathcal{K} and \mathcal{W} are shown in Fig.3.

Leading order velocities $\left\langle\widetilde{u}_{i}^{(0)}\right\rangle$ and $\left\langle\widetilde{w}^{(0)}\right\rangle$ are macro-scale variables relating X_{i} and Z. Cell average of continuity equation (3) gives

$$
\begin{equation*}
\Omega_{f}\left(\frac{\partial\left\langle u_{i}^{(0)}\right\rangle}{\partial X_{i}}+\frac{\partial\left\langle w^{(0)}\right\rangle}{\partial Z}\right)+\iint_{\Omega_{f}} \frac{\partial u_{i}^{(1)}}{\partial x_{i}} d x d y=0 \tag{8}
\end{equation*}
$$

Using Gauss theorem, periodical and no-slip boundary conditions, the integral above is zero. Hence we obtain the cell averaged continuity equation

$$
\begin{equation*}
\frac{\partial\left\langle\widetilde{u}_{i}^{(0)}\right\rangle}{\partial X_{i}}+\frac{\partial\left\langle\widetilde{w}^{(0)}\right\rangle}{\partial Z}=0 \tag{9}
\end{equation*}
$$

Figure 2: Illustration of FEM solutions for $K_{i j}$ and $A_{j}, j=1$. From numerical results, $\mathcal{K}=\mathcal{K}_{11}=\mathcal{K}_{22}=$ $0.3134+0.5764 i, \mathcal{K}_{12}=\mathcal{K}_{21}=0$. For A_{j}, we compare the gradient value, we obtained $\left\langle\partial A_{1} / \partial x\right\rangle=\left\langle\partial A_{2} / \partial y\right\rangle=$ $0.2506+0.1416 i . \mathcal{K}_{21}$ represents the y-direction velocity caused by the macro-scale pressure gradient in x-axis. Parameters are: porosity $\mathcal{N}=0.8743$, and dimensionless viscous coefficient $\sigma=0.0259$.

Figure 3: Comparison of magnitude of \mathcal{K} and $\mathcal{W} . \sigma=\nu_{e} / \omega^{\prime} \ell^{\prime 2}$. Taking laboratary values: using constant $\nu_{e}=1.0 \mathrm{E}-3 \mathrm{~m}^{2} / \mathrm{s}, \ell^{\prime}=8 \mathrm{~cm} . h^{\prime}=0.5 \mathrm{~m} . \omega^{\prime}=4 \pi, 2 \pi, \pi \mathrm{~s}^{-1}$, corresponding to $k h=8.05,2.08,0.77$.

Cell average of horizontal and vertical momentum equations,

$$
\begin{equation*}
-i\left\langle\widetilde{u}_{i}^{(0)}\right\rangle=-\mathcal{N} \frac{\partial \widetilde{p}^{(0)}}{\partial X_{i}}-\alpha_{i k} \frac{\partial \widetilde{p}^{(0)}}{\partial X_{k}}, \quad-i\left\langle\widetilde{w}^{(0)}\right\rangle=-\mathcal{N} \frac{\partial \widetilde{p}^{(0)}}{\partial Z}-\beta \frac{\partial \widetilde{p}^{(0)}}{\partial Z} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{i k}=\frac{1}{\Omega} \oint d s\left[\sigma\left(\frac{\partial K_{i k}}{\partial x_{j}}+\frac{\partial K_{j k}}{\partial x_{i}}\right)-A_{k} \delta_{i j}\right] n_{j}, \quad \beta=\frac{\sigma}{\Omega} \oint d s \frac{\partial W}{\partial x_{j}} n_{j} \tag{11}
\end{equation*}
$$

does not depend on the vertical coordinate $Z . \mathcal{N}=\Omega_{f} / \Omega=1-\pi a^{2} / 4 \ell^{2}$ is the porosity of the cell. The values of $\alpha_{11}=\alpha_{22}=-\mathcal{N}-i \mathcal{K}, \alpha_{12}=\alpha_{21}=0$ and $\beta=-\mathcal{N}-i \mathcal{W}$. Substituting the momentum equations (10) into the continuity equation (9), we have the general pressure equation in form of the Laplace equation as

$$
\begin{equation*}
\frac{\partial}{\partial X_{i}}\left(\mathcal{K} \frac{\partial \widetilde{p}^{(0)}}{\partial X_{i}}\right)+\mathcal{W} \frac{\partial^{2} \widetilde{p}^{(0)}}{\partial Z^{2}}=0 \tag{12}
\end{equation*}
$$

In usual isotropic porous media, where there is no contrast of length scale in all directions, the macroscale equation is Laplace equation. Herein x_{i} and Z are in sharp contrast, hence (12) is not isotropic. $\mathcal{K}\left(X_{i}\right)$ and $\mathcal{W}\left(X_{i}\right)$ vary with horizontal macro-coordinate, and are irrelevant to vertical coordinate Z.

The value of dimensionless viscosity σ depends on the eddy viscosity coefficient inside the viscous flow region. A simple energy balance model had been proposed for a similar problem (Mei et al, 2014). Note from (6), the dimensionless viscosity affects the complex number \mathcal{K}. Therefore the turbulent viscosity ν_{e} affects not only the dissipation but also the phase difference between the velocity and the pressure gradient.

2.3 Matching conditions

For a linear problem, we expect a solution in form of $\widetilde{p}^{(0)}=P e^{-i t}$. We require the velocity to be continuous at $X= \pm L$ for $-h \leq Z<-D$, and to vanish for $-D \leq Z \leq 0$. At cylinder array region, the average horizontal velocity is $\left\langle\widetilde{u}^{(0)}\right\rangle$. Combing with the definition $\left\langle\widetilde{u}^{(0)}\right\rangle=-\mathcal{K} \partial P / \partial X$, so we have $\partial \Phi / \partial X=-\mathcal{K} \partial P / \partial X$ for $-h \leq Z<-D$ and $\partial \Phi / \partial X=0$ for $-D \leq Z<0$. Another matching condition is continuous of potential or pressure, i.e. $i \Phi=P$ for $-h \leq Z<-D$.

3 NUMERICAL PROCEDURE

For finite length platform in 2D space, the general solution of (12) $P=\sum_{n=0}^{\infty} P_{n}$ is rewritten as $P_{0}(X)=$ $p_{0} X+q_{0}, P_{n}(X)=p_{n} \sinh \lambda_{n} X+q_{n} \cosh \lambda_{n} X, n=1,2, \ldots$ with $\lambda_{n}=K_{n} \sqrt{\mathcal{W} / \mathcal{K}}, K_{n}=n \pi /(h-D) . p_{n}$ and
q_{n} for $n=0,1,2,3 \ldots$ are complex coefficients to be determined from the other boundary conditions. Using the matching conditions at $X= \pm L$, we can obtained the unknowns through Ritz method numerically. Convergence tests have been carried out to find the order n in series expansions of Φ and P. Preliminary verifications of the calculation procedure are examined through comparison with open water flows by setting $\mathcal{K}=\mathcal{W}=i$ and the porosity $\mathcal{N}=1$. To verify present numerical solution, we compare the numerical results with Stoker's solution for a thin plate slab with $D=0$. By replacing the value of \mathcal{K}, \mathcal{W}, and \mathcal{N} in the code, we can calculate the full problem straightforward.

4 TRANSMISSION AND REFLECTION

For the case platform without pile array, the phase difference between refection and transmission wave is $(-1)^{n} \pi / 2$ for $k_{n}<k<k_{n+1}$. When there is pile array, the difference is $\pi / 2$ for short waves when the draught is large, e.g. $D / h=0.2 \sim 0.3$. However, the phase difference is zero for infinite long waves. The phase difference is gradually increase to $\pi / 2$ when $k h$ increases, as shown in Fig.4. For no piles cases, the phase angle of transmission waves has a sharp jump π. When pile array is in existence, there is a smooth transition. The transmission coefficient b_{0} is smaller in for pile supported platform than that of no piles, indicating the eddy viscosity can dissipate a lot of wave energy. Due to the existing of cylinders, the reflection coefficient c_{0} is larger in cylinder region.

Figure 4: Comparison of reflection and transmission coefficient. $L / h=1$.

5 CONCLUSIONS AND FUTURE WORKS

Using homogenization theory, the scattering problem of free surface waves around cylinder arrays and platform is investigated. Preliminary results of a two dimensional problem are obtained, and viscous effects on the transmission and reflection coefficients are discussed. The proposed semi-analytical method can be easily extended to three dimensional problems with complex geometry profile of the platform. More numerical results will be reported in the conference.

ACKNOWLEDGEMENTS

Discussions with Prof. C.C. Mei for homogenization analysis of the viscous flow inside the pile array region are greatly appreciated.

References

[1] Kagemoto, H. \& Yue, D.K.P., 1986. Interactions among multiple three-dimensional bodies in water waves: an exact algebraic method, J. Fluid Mech., 166, 189-209.
[2] Kashiwagi, M., 2000. Hydrodynamic interactions among a great number of columns supporting a very large flexile structure, J. Fluids Struct., 14, 1013-1034.
[3] Linton, C.M. \& Evans, D.V., 1990. The interaction of waves with arrays of vertical circular cylinders, J. Fluid Mech., 215, 549-569.
[4] Mei, C.C., Chan, I.C. \& Liu, P.L.F., 2014. Waves of intermediate length through an array of clylinder Environ. Fluid Mech., 14, 235-261.
[5] Simon, M.J., 1982. Multiple scattering in arrays of axisymmetric wave-energy devices. Part I. A matrix method using a plane-wave approximation. J. Fluid Mech., 120, 1-25.
[6] Singh, J. and Babarit, A., 2014. A fast approach coupling boundary element method and plane wave approximation for wave interaction analysis in sparse arrays of wave energy converters, Ocean Eng., 85, 12-20.
[7] Spring, B.H. \& Monkmeyer, P.L., 1974. Interaction of plane waves with vertical cylinders, Proc. 14th Conf. on Coastal Engneering, 107, 1828-1847.

