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HIGHLIGHT

A simple conceptual energy dissipation model is proposed for the piston mode wave resonance in
narrow gaps formed by floating bodies. Fundamental physical mechanisms for a number of physical
phenomena observed in model tests are understood with the aid of the new conceptual model. An
approach to determine artificial damping term in the modified potential flow model is proposed.

1 INTRODUCTION

The gap resonance problem has attracted extensive attentions in the past decades due to its
engineering significance. For this class of problems, potential flow models generally over-predict
resonant response amplitudes significantly due to an inherent limitation where energy dissipations
due to viscous effects are neglected. In the frame of linear potential flow theory, Chen (2004)
modified the free surface boundary condition via introducing a linear artificial dissipative term. The
modified potential flow models are able to predict resonant response amplitudes accurately and
efficiently with a damping coefficient being tuned against experimental data.

A conceptual model based on control volume concept is proposed in this study for the motion of the
oscillating fluid bulk in a fixed narrow gap. A linearized damping coefficient, which is dependent
on body geometries, response amplitude and friction and local loss coefficients similar to those in
pipe flows, is introduced to account for the energy dissipations in gap resonance problems. A
quantitative link is established between the damping coefficient in the present conceptual model and
that used in the modified potential models by Chen (2004) and Lu et al. (2011).

2 A CONCEPTUAL MODEL FOR GAP OSCILLATIONS

The gap resonance problem considered in this study is illustrated in Fig. 1. To analyze the wave
induced motion of the fluid in the gap, the energy conservation of the fluid enclosed by a control
volume (CV) is considered. The CV includes three regions, denoted as region 1, 2 & 3 as shown in
Fig. 1. The region 3 represents a zone outside the gap that is influenced by the gap flow, which is an
unknown a priori. In the dimension (s* and B*) of the region 3, depth s* can be determined through
experimental calibrations based on a principle that the flow velocity in/out of the exterior
boundaries of region 3 is significantly smaller than the flow velocity in the gap. The energy
conservation equation over the CV reads
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where K and U are the total kinetic and potential energy contained in the CV, which can be
approximated respectively as
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where p is the density of fluid, K;, S; and V; are the kinematic energy, fluid volume and mean
velocity of the j-th region, respectively, g is acceleration due to gravity and 7(¢) is the amplitude of



The 32nd International Workshop on Water Waves and Floating Bodies, Dalian, China, 23-26 April, 2017.

fluid oscillation in the gap relative to the mean water level.
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Fig. 1 Sketch of gap resonance between two fixed identical boxes with a curved gap entrance
The rate of work done on the CV and rate of energy flux can be respectively approximated as
: P 3 3
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where F1 and F> are forces acting on surface N1N> and N3Ns respectively; Wp represents the
summation of energy dissipation due to friction forces on the CV surfaces (body surfaces and
seabed) and viscous flows inside the CV. Please note I'n/Vi ~ 0 is assumed in driving Eq. 2. By
expressing the area of the regions as S1 = (D — R)By, S> = (2 — n/2)R*> + RBg, S3 = s*B*, and further
considering the continuity conditions at the interfaces between regions 1 & 2 and regions 2 & 3, we
have V1 = dy/dt, $2V2/R = BgVh, and s*V3 = BgV1 + s*Va. Therefore, based on Egs. 1~3, we can
obtain the equation of motion for the fluid in the gap
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Assuming Va/Vy and V3/V1 are small, and applying the same energy conservation to region 4 in Fig.
1, it is straightforward to establish a relationship between F and the wave excitation force F, as
shown in Fig. 1. Thus, Eq. 4 can be re-formulated as blow.
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In Eq. 5, y is a coefficient and and Wp includes the energy dissipations from frictions (E4f) and the
turbulence (E4-) in the CV. It is anticipated that the energy dissipation near the gap entrance plays a
dominate role and it can be approximated as Es = 0.5¢BgD V1?V1. Here £ is a local loss coefficient
mainly associated with the energy loss around the gap entrance, which is often used in hydraulics as
a minor loss coefficient. The friction-induced dissipation Esr includes the contributions from the
shear force (7g) acting on the side surfaces of floating bodies in the gap, as well as the shear stress
(za) acting on the underside surfaces of bodies and the seabed. The contribution from 7. is expected
to be insignificant, and is hence ignored in the following derivations. Thus we have Esr= 2t,DV1.
The shear force on the wall in gap, i.e., induced by the oscillatory motion of the water columns, can
be approximated by 7, = 0.5/pV12, where fis a friction coefficient. Therefore, the dissipation reads
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= yF, where m*:pl:Bg (D-R)+ (5)

Substituting Eq. 6 into Eq. 5 and noting that V1 = dz/dt, we obtain a linearized equation of motion:
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where &* represents a linearized damping coefficient. According to Eqs. 7 and 5, the natural
frequency w, of the water oscillation in the gap can be derived as
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Assuming a harmonic wave motion in gap #(f) = nssin(wt) that are induced by a harmonic
excitation force /' = Fsin(wt + ¢) with an amplitude F4 and a phase angle ¢, Eq. 7 becomes
Y £*B g
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Employing the harmonic analysis, the wave amplitude 74 and phase shift ¢ can be obtained as
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With Eq. 10a, the resonant frequency can be obtained by the fact that dy4/dw = 0, and the resonant
amplitude can be approximated by @ — wr. Therefore we have
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Considering Eqgs. 7 and 9, the damping coefficient ¢ can be further written as & = g4|cos(wf)|, where
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Possible methods for determining the friction coefficient f can be found in Soulsby (1997) while the
energy loss coefficient £ will be determined by using available experimental data.

3 EXPERIMENTAL SET-UP AND RESULTS

Physical model tests were conducted in a wave flume of 56 m in length, 0.7 m in width and 0.7 m in
depth. Two boxes with draft D = 0.252 m, gap spacing By = 0.05 m and breadth B = 0.5 m were
fixed in the wave flume. Different edge shapes of the twin boxes were considered in the tests. The
edge configuration was measured by using a non-dimensional parameter of roundness, defined as
R/B,. Regular waves with a period ranging from 0.90 s to 1.50 s were used in the tests. The incident
wave height H; was fixed at 0.024 m for various R/B, values.

Fig. 2a shows that the resonant wave height increases sharply as the corner shapes change from
sharp to round shapes. The observed variation of resonant frequency with the roundness is
consistent with the understanding base on Eq. 8. The larger value of roundness R/B, leads to the
higher resonant wave frequency. Fig. 2b shows the phase difference between the free surface
motions measured at G4 and G3. It is believed that the excitation force F(¢) is in phase with the free
surface elevation at G3. Based on Eq. 10b, the damping coefficient ¢4 can be calibrated via
correlation analysis by using the least-square method. The results of ¢4 are listed in Table 1. The
observed substantial increase in the resonant wave height from sharp corner (R/B; = 0) to round
corners (R/Bg = 0.5-3.0) (see Fig. 2a) is related to the sudden decrease of ¢4. As suggested by Eq.
11b, the decrease of &4 will give rise to an increase in the resonant amplitude #.4-res.

The lines in Fig. 2b are the corresponding fitting curves, through which &4 was obtained. Based on
Eq. 12 and the results in Table 1, the energy loss coefficient & was evaluated (f was estimated by
Soulsby (1997)). Fig. 2¢ shows that the values of ¢ is much larger than f, which suggests that the
damping induced by the turbulence/vortex shedding is dominant in comparison with wall frictions.
Through conducting model tests for oscillating flow passing sudden expanding pipe, Smith & Swift
(2003) quantified a general minor loss coefficient. The obtained values of ¢ in this study are close to
the results by Smith & Swift (2003).

Further studies confirm a quantitative link between the present damping coefficient &4 and the
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artificial damping coefficient x used in the modified potential models (Chen 2004; Lu et al. 2011),
namely u = e4wn. Details of the establishment of this link will be presented in the Workshop. Fig 3
shows the good agreement between the modified potential solutions with ¢ = c4w» and the
experimental results.

Based on Eq. 12 and the link of x4 = e4n, the artificial damping coefficient used in the modified
potential flow models (Chen 2004; Lu et al. 2011) can be formulated as follows,

3
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With the aid of Eq. 13, an iterative modified potential model is proposed in this study, by which the
resonant wave amplitude in gap can be iteratively predicted given a known loss coefficient &, In
addition to the previously examined gap resonance under constant wave amplitude, the cases with
varied incident wave heights were also calculated by the iterative modified potential model.
Comparisons with the experiments of this study suggest the promising agreement. Moreover, the
iterative modified potential model is used to predict the piston-mode fluid resonance in an
oscillating moonpool. The present numerical solutions are found to be in good agreement with the
experimental data in Faltinsen & Timokha (2015). More details will be presented in the Workshop.

Table 1 Damping coefficient 4 for different edge roundnesses of R/B;
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Fig. 2 (a) Variation of the relative wave height in gap with incident wave frequency at different edge roundness;
(b) Phase shift of free surface motions at G4 and G3 versus incident wave frequency for different edge
roundnesses; (c) Local (minor) energy loss coefficient & and friction coefficient f' versus edge roundness.
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Fig. 3 Comparison of numerical predictions of potential flow model (with/without damping term) with
experimental results for different roundnesses: (a) R/B; = 0; (b) R/B; = 0.5; (¢) R/B; =1.0; (d) R/Bg=2.0; (e) R/B;
=3.0. Damping coefficient 4 = £4wn, where &4 is listed in table 1 and w. is the resonant frequency.
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