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HIGHLIGHT

• The analytic solution of the 3-D problem on the flexural-gravity waves generated by a local time-
periodic external pressure on inhomogeneous ice cover is obtained.
• For two identical ice sheets with a rectilinear crack, the solution is received in explicit form.

1 INTRODUCTION

The behavior of the ice cover under dynamic action has been thoroughly studied for the homogeneous
ice sheet, covering the water surface completely (e.g. Squire et al., 1996). In the case of inhomogeneous
ice cover, there are only some examples of solutions of particular problems.

In this paper, three-dimensional flexural-gravity waves generated by a local time-periodic external
pressure on top of ice sheet are investigated for three configurations, concerning: (i) a freely floating
semi-infinite ice sheet, (ii) two semi-infinite ice sheets with different properties connected by rectilinear
partially frozen crack, and (iii) a semi-infinite ice sheet in contact with the fixed vertical wall (the edge
of the ice sheet can be either clamped or free). The problem is formulated within linear hydroelastic
theory. The fluid is assumed to be inviscid and incompressible and its motion is potential. The ice
sheet is treated as an elastic thin plate. The behavior of amplitudes of the plate deflection and water
elevation in dependence on the frequency and the position of the load center is analyzed. The solutions
are obtained both for a fluid of finite depth and for shallow-water approximation.

2 MATHEMATICAL FORMULATION

Let us consider the statement of the problem in the most complex configuration (ii). Two semi-
infinite elastic plates of thicknesses h1 and h2 float on water of depth H. These plates may be
connected at x = 0 by a vertical linear spring and a flexural rotational spring with stiffness k1 and
k2, respectively. These two springs simulate a partially frozen crack. The y-axis is directed along the
rectilinear crack and the z-axis is directed vertically upwards. The plate drafts are ignored. The wave
motions of the fluid and the ice sheets are generated by the steady forced oscillations of the external
pressure p(x, y, t) = P (x, y) exp(−iωt), where ω is the frequency and t is the time. We restrict our
consideration to local axially symmetric load with the parabolic distribution, P (x, y) = gρ0Hf(r0),
f(r0) = 1 − (r0/a)2, r0 =

√

(x − x0)2 + y2. Here ρ0 is the fluid density, g is the acceleration due to
gravity, a is radius of the load domain, the center of which is at the point x = x0, y = 0 (x0 > a).

The boundary-value problem for the velocity potential ϕ(x, y, z, t) and deflection of ice sheet
w(x, y, t) can be written as

∆3ϕ = 0 (−∞ < x, y < ∞, −H < z < 0), ∆3 ≡ ∆2 + ∂2/∂z2, ∆2 ≡ ∂2/∂x2 + ∂2/∂y2 , (1)

Dn∆2
2w + ρhn∂2w/∂t2 + gρ0w + ρ0∂ϕ/∂t = H(x)p(x, y, t) (z = 0), (2)

∂w/∂t = ∂ϕ/∂z (z = 0), ∂ϕ/∂z = 0 (z = −H), (3)
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where w− = w|x=−0, w+ = w|x=+0. Here Dn = Eh3
n/[12(1 − ν2)]; E, ν, ρ are the Young’s modulus,

the Poisson’s ratio and the density of the ice sheet, respectively; H(x) is the Heaviside function; n = 1
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at x < 0 and n = 2 at x > 0. The edge conditions (4), (5) are the most general boundary
conditions for partially frozen crack. Taking the limit values for k1 and k2, we can also model
the free-edge (k1 = k2 = 0), hinge-connector (k1 = ∞, k2 = 0) and rigidly joined plates
(k1 = k2 = ∞) cases. The radiation condition is imposed in the far field.

For D1 = 0, we have the configuration (i) in which the fluid is bounded by the free surface
at x < 0 and the edge of the ice sheet is free. For the configuration (iii), the fluid is restricted
at the left by the rigid wall: ∂ϕ/∂x = 0 at x = 0. The edge of the ice sheet can be free or
frozen to the fixed vertical structure, then w = ∂w/∂x = 0 (x = 0).

For the shallow-water approximation we can easily take into account the draft of the plates.
The potential ϕ(x, y, t) and the deflection w(x, y, t) are determined from the relations (2), (4),
(5) and the equation ∂w/∂t = −(H − dn)∆2ϕ, where dn = ρhn/ρ0 (n = 1, 2).

3 METHOD OF SOLUTION

We describe briefly the solution of the problem (1)∼(5) by the Wiener-Hopf technique. The
dimensionless variables and parameters are introduced

(x′, y′, z′) =
1

H
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√
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g
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ρhn

ρ0H
λ2, k′
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3
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Below, the primes are omitted. We will seek the velocity potential and the deflection in the
form

ϕ(x, y, z, t) =
√

gH3φ(x, y, z)e−iωt, w(x, y, t) = HW (x, y)e−iωt.

We use the Fourier transform to the variables x and y in the form

Φ−(α, s, z) =
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From the Laplace equation (1) and the no-flux bottom condition (3), we have

Φ(α, s, z) = Φ−(α, s, z) + Φ+(α, s, z) = C(α, s)Z(α, s, z), Z(α, s, z) =
cosh[(z + 1)

√
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cosh
√
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,

(6)
where C(α, s) is unknown function. We introduce the functions G±

n (α, s) (n = 1, 2)

G−
n (α, s) =

∫ ∞

−∞
e−isy

∫

0

−∞

[

(βn∆2

2 + 1 − δn)
∂φ

∂z
− λ2φ

]

z=0
eiαxdxdy,

G+

n (α, s) =
∫ ∞

−∞
e−isy

∫ ∞

0

[

(βn∆2

2 + 1 − δn)
∂φ

∂z
− λ2φ

]

z=0
eiαxdxdy.

The functions with the indexes +/− are analytical on α in the upper/lower half-plane, respec-
tively. From the boundary conditions (2), we have

G−
1 (α, s) ≡ 0, G+

2 (α, s) = −iλF (α, s)eiαx0 , F (α, s) = 4πeiαx0J2(a
√

α2 + s2)/(α2 + s2), (7)

where the F (α, s) is the Fourier transform of the function f(r0) and J2(·) is a Bessel function
of the first kind. Using (6), we have

Gn(α, s) = G−
n (α, s) + G+

n (α, s) = C(α, s)Kn(α, s), (8)

where Kn(α, s) are the dispersion functions for the flexural-gravity waves

Kn(α, s) = [βn(α2 + s2)2 + 1 − δn]
√

α2 + s2 tanh(
√

α2 + s2) − λ2 (n = 1, 2).
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It is known, that the dispersion relation K1(γ) ≡ (β1γ
4 + 1 − δ1)γ tanh γ − λ2 = 0 has real

roots ±γ0, four complex roots ±γ−1, ±γ−2, γ−2 = −γ̄−1 (the bar denotes complex conjugation),
and the countable set of imaginary roots ±γm, m = 1, 2, .... The second relation K2(µ) ≡
(β2µ

4 + 1 − δ2)µthµ − λ2 = 0 has the roots µk (k = −2,−1, 0, ...). Then the roots of the

dispersion relations Kn(α, s) = 0 are χm =
√

γ2
m − s2 (n = 1), αm =

√

µ2
m − s2 (n = 2).

From the relations (7) and (8), we obtain

G−
2 (α, s) − iλF (α, s)eiαx0 = G+

1 (α, s)K(α, s), K(α, s) = K2(α, s)/K1(α, s).

We factorize the function K(α, s)

K(α, s) = K−(α, s)K+(α, s), K±(α, s) =
∞
∏

j=−2

(α ± αj)γj/[µj(α ± χj)],

where K± are analytical in the upper/lower parts of the complex plane α, respectively.
We use the representation by Noble [1958]

F (α, s)eiαx0
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and as a result we obtain the equation

G−
2 (α, s)/K−(α, s) − iλL−(α, s) = G+

1 (α, s)K+(α, s) + iλL+(α, s).

The functions on the left and right sides of this equation are analytical in the lower and upper
parts of the complex plane α, respectively. Then we have analytical function over the entire
complex plane α. By Liouville’s theorem, this function is a polynomial. The degree of the
polynomial is determined by the behavior of functions as |α| → ∞ and is equal to three:
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3
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k,

where ak(s) are unknown functions which are defined from the edge conditions. We have
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Using the conditions (4),(5), we obtain the system of four linear algebraic equations to define
the coefficients ak(s) (k = 0, 1, 2, 3, ). All integrals are evaluated by the residue method.

After solving this system, we find the ice deflections by performing inverse Fourier transform:
for x < 0
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for x > 0
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The integrands in (9) and (10) decay exponentially as s → ∞. The first term in (10) corresponds
to the solution for the infinitely extended ice cover.

For the identical sheets with a crack, the solution can be obtained in the explicit form. In this
case K±(α, s) ≡ 1, L−(α, s) ≡ 0. The coefficients a0(s), a2(s) and a1(s), a3(s) determine the
symmetric and antisymmetric part of the solution, respectively. The system of linear algebraic
equation for the determination of coefficients ak (k = 0, 1, 2, 3) is divided on two systems. We
find a0(s) = νs2a2(s), a1(s) = (2 − ν)s2a3(s). The solution for a2(s) and a3(s) has the form
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where
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It is shown (Marchenko, 1999) that the symmetric part of the diffraction-problem solution
about scattering the flexural-gravity waves on the rectilinear crack has the waveguide mode.
There is the value of s = s0 > µ0 at which Λ(s0) = 0. The value s0 is extremely close to the
value µ0. Hence functions a0(s) and a2(s) have the pole in the absence of the rotational spring,
that is at k2 = 0. The residue at s = s0 determines the amplitude of the waveguide mode,
propagating along the crack and decreasing exponentially away from the crack.

Using the stationary phase method, we can find asymptotic behavior of the wave elevation
amplitudes in the far field |W (r, θ)| = A(θ)/

√
r +O(r−1) at r → ∞ (x = r cos θ, y = sin θ). It

is shown that there are the predominant directions of wave propagation in the far field. These
directions are at the angle to the crack for non-identical plates and for the configuration (i). For
the identical plates there is waveguide mode along the crack. Fig. 1(a) shows the directional
diagram A(θ) for different frequencies (in s−1). The isolines of deflection amplitude |W | are
presented in Fig. 1(b) at ω = 1 s−1. The following input date are used: E = 6 GPa, ρ0 =
1025 kg/m3, ρ = 922.5 kg/m3, ν = 0.3, h1 = 1 m, h2 = 2 m, a = 25 m, x0 = 50 m, H =
100 m. The edges of the plates are free.

Figure. 1.

More detailed numerical results will be presented at the Workshop.
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