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 1. INTRODUCTION 

Asymmetric water entry of a wedge into a liquid free surface is a typical representation of the initial 

stage of fluid/structure impact in various engineering applications. The geometry of the body enables 

self-similar variables to be used, which incorporate the time variable into spatial ones. The problem has 

already been extensively considered. The work over the last decade includes those by Semenov & Iafrati 

(2006), Semenov & Wu (2012) based on the integral hodograph method and those by Xu, Duan & Wu 

(2008, 2010) based on the BEM. These solutions clearly identified a singular behaviour of the velocity 

and pressure at the corner point of the wedge apex. Attempts to deal with the singularity through the 

Kutta condition were made by Riccardi & Iafrati (2004) using point vortices while the free surface 

remains unchanged and by Xu & Wu (2015) using the method of discrete vortexes.  

In this study we extend the integral hodograph method developed previously for the vortex-free 

water entry problems to include a rolled-up vortex sheet shed from the edge of the wedge. The vortex 

sheet in ideal fluid can be considered as the limit of infinite Reynolds number and away from the vortex 

sheet the flow will remain irrotational. To deal with the vortex sheet, we adopt the general approach in 

Pullin (1978) who considered the self-similar flow due to vortex sheet shed from the corner of an 

infinite wedge in the unbounded fluid domain. The Kutta condition applied at the wedge apex removes 

the velocity singularity and determines the total circulation of the vortex sheet.  

In the presentation, we focus our attention on the shape of the vortex line and the free surfaces as 

well as on the pressure distribution along the wedge surface. The integral hodograph method is used to 

derive analytical expressions for the derivative of the complex potential and for the complex velocity, 

both of which are defined in the first quadrant of a parametric plane. It enables the original partial 

differential equation with nonlinear boundary conditions on the unknown free surface and on the 

unknown vortex sheet to be reduced to a system of integro-differential equations along the axes of the 

first quadrant and a line which is the mapping of the vortex line in the parametric plane, respectively.  

The motion of the vortex sheet is governed by Birkhoff-Rott integro-differential equation. The coupled 

systems of integral equations are then solved through successive approximations. The calculated free 

surface shape, streamlines and pressure distributions on the wedge surface are presented and discussed.  

 
2. FORMULATION OF THE PROBLEM  

We consider a wedge of inner angle 2  with its tip fixed at the origin, as shown in Fig.1a. The flow 

comes from infinity to the wedge with speed V and the velocity forms an angle in  with the x axis. A 

stagnation point A is expected on the windward side of the wedge, where the zero streamline splits. In 

previous studies (Semenov & Iafrati, 2006, Semenov & Wu, 2012) it was assumed that toward the apex 

C , the flow accelerates to an infinite speed and negotiates around the sharp corner. Then, it decelerates 

on the leeward side. Although such flow configuration is possible in ideal fluid, it is very different from 

real situations especially at local areas.  

We will seek the solution of the problem through superposition of two potentials  
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where )(),( 1

2

1 ztwVtZW   is the complex potential corresponding to water entry of the wedge without 

vortex sheet,  )(),( 2

2

2 ztwVtZW   is the complex potential of the vortex sheet, and VtZz /  is the self-

similar variable. The potential )(2 zw  is determined in such a way to provide zero normal velocity-

mailto:semenov@a-teleport.com
mailto:semenov@a-teleport.com


The 32nd International Workshop on Water Waves and Floating Bodies, Dalian, China, 23-26 April, 2017. 

 

component on whole boundary of the flow domain including the wedge surface and the free surface.  

We choose the first quadrant of the  plane in Fig.1b to formulate the boundary-value problems for 

the complex velocity, dzdw/ , and for the function ddw/  on the real and imaginary axes of the first 

quadrant. 

 

 

Fig. 1. (a) The similarity plane z x iy  , (b) the  plane. 

According to Eq. (1) we can write 
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The potential 1w  is chosen as the reference potential as it is affected by the vortex sheet potential 2w   on 

the nonlinear free surface boundary conditions only, while on the wedge surface both  1w   and 2w  

satisfy the impermeable boundary condition independently. Furthermore dzdw /1  may be singular at the 

tip of the wedge, but it is continuous across the vortex sheet. 2w  due to vortex sheet is then to ensure 

that the total velocity dzdw/  is finite at the tip.  From equations (2) and (3) it follows that the derivative 

of the mapping function,  
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can be written based on the reference potential 1w  only.  

The free surface boundary conditions for self-similar flows can be written in the following form 

(Semenov & Iafrati, 2006): 
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where )(v  and )(  are the velocity magnitude and angle to the free surface, )(s  is the arc length 

coordinate of the free surface, with 0s  at tip of the thin jet (point O ), and )(  is the angle between 

the velocity and the x axis. Taking into account Eqs.(1) - (3), we can write the following relations 
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The derivative of the complex potential, ddw /2 , can be found using the Chaplygin singular point 

method (see Chapter 1 in Gurevich, 1965). According to the Plemelj formula, on the vortex sheet we 

have  
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where  )(  is the mapping of the vortex sheet in the  plane, the sign "+"  and "-" correspond to 

each side of the vortex sheet, as the tangential velocity is discontinuous across the vortex sheet, 

respectively. The parameter  1 , in which   is the normalized circulation along the vortex sheet, 

is scaled as follows: 0 at point E  and 1  at point C . J  is the total circulation along the vortex 

sheet, which is determined from Kutta condition imposed at the corner  point C .  

The Birkhoff-Rott equation is based on the fact that the circulation   at a fixed point Z  on the 

vortex sheet does not vary with time and  it relates the motion of vortex sheet, whose shape  may be 

written as  ),( tZ  ,  to  the average of local fluid velocities on both sides of the vortex sheet   (Moore, 

1975), 
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where   corresponds to the same sign in Eq.(7) and the bar  denotes the complex conjugate. Eq.(8) 

automatically satisfies the conditions of continuous normal velocity and pressure across the vortex sheet 

(Pullin, 1978). In the similarity plane, using self-similar variable VtZz / , Eq.(8) takes the form  
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from which the shape of the vortex sheet in the  plane, )( ,  and  in the similarity plane, )]([ z ,  

can be determined.  

In Fig.2 are shown results for the wedge angle 
0902   turned by angle 

025  relative vertical 

axis and entering vertically into the free surface. The streamlines are shown in Fig.2a. The stagnation 

point is clearly seen. On the leeward side of the wedge there is a relatively small vortex sheet region 

which is shown by a larger scale in Fig.2b. The dashed line corresponds to the vortex line which is 

truncated after rotating 5 rounds. The rest of the circulation is modelled as an isolated vortex of the 

strength N1 , where the value 69.0N  and 33.0J are obtained for the case shown in Fig.2. The 

solid lines in Fig.2b are the streamlines with the increment 0.005 of the stream function. It can be seen 

that larger difference between results with and without vortex sheet occurs near the wedge apex, where 

pc  for the  vortex-free flow, and 0pc  for the present case. On the leeward side the pressure 

coefficient reaches its minimal value 3.8min pc  at the distance 088.0ms  from the wedge apex. 

Thus, from the present method, the pressure coefficient may still take negative value relative to the 

ambient pressure,  but it is finite.  The minimum pressure occurs at a point very close to the centre of the 

vortex, as can be seen from Fig.2b. These results are qualitatively similar to those obtained by Riccardi 

& Iafrati (2004), who considered the impact of an asymmetric floating wedge and studied flow details 

close to the apex, neglecting the effects of the free surface deformation.  



The 32nd International Workshop on Water Waves and Floating Bodies, Dalian, China, 23-26 April, 2017. 

 

 

   
Fig.2. (a) the free surface shape and streamlines,  (b) vortex sheet region: vortex sheet (dashed line) and 

streamlines (solid lines), c) pressure distributions on the windward side (sw<0) and leeward  (sw>0): present 

solution with vortex sheet (solid line), vortex - free solution (dashed line).  

 

This work is supported by Lloyd’s Register Foundation (LRF) through the joint centre involving 

University College London, Shanghai Jiaotong University and Harbin Engineering University, to which 

the authors are most grateful. LRF supports the advancement of engineering-related education, and 

funds research and development that enhances safety of life at sea, on land and in the air. 

 

REFERENCES 

1. Gurevich, M. I. 1965. Theory of jets in ideal fluids. Academic Press, 585p. 

2. Moore, D. W. 1975 The rolling up of a semi-infinite vortex sheet. Proc. Roy. SOC. A 345, 417-430. 

3. Pullin, D.I. 1978. The large-scale structure of unsteady self-similar rolled-up vortex sheets. JFM, 88, (3), 401 - 430. 

4. Riccardi, G. & Iafrati, A. 2004. Water impact of an asymmetric floating wedge. JEM, 49, 19 - 39.  

5. Semenov, Y.A.  & Cummings, L.J. 2006. Free boundary Darcy flows with surface tension.... EJAM, 17, 607 – 631.  

6. Semenov, Y. A. & Iafrati, A. 2006 On the nonlinear water entry problem... JFM, 547, 231–256. 

7. Semenov, Y.A. & Wu, G.X. 2012. Asymmetric impact between liquid and solid  wedges. Proc. of RS, A. 469.   

8. Xu, G.D., Duan, W.Y. & Wu, G.X. 2008. Numerical simulation of oblique .... Ocean Engin., 35, 1597 - 1603. 

9. Xu, G.D., Duan, W.Y. & Wu, G.X. 2010. Simulation of water entry of a wedge.... Proc. of RS A. 466, 2219 - 2239. 

10. Xu, G.D. & Wu, G.X. 2015. Oblique water entry of a wedge with vortex shedding. 30th IWWWFB, Bristol, UK. 

a) 

b) c) 


