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1 INTRODUCTION

This investigation is inspired by results from model scale laboratory tests carried out by Carnegie Wave
Energy. The device tested is a 1:20 model of CETO 6, which is a buoyant submerged taut-moored point
absorber WEC (wave energy converter). The device resembles a rather flat cylinder (axis vertical).

Testing was primarily in irregular waves, though a smaller selection of regular wave tests was carried
out. Due to the axi-symmetry of the device, one might expect that the response would be confined to the
(x, z) plane, i.e. the surge, heave and pitch motions of CETO. However, in a number of tests, significant
sway and roll motions were measured. Additionally, it was noted that the horizontal plane responses of
the device were not always coincident with the driving wave frequency/frequencies.

Such observations are characteristic of instability, a topic investigated in various contexts in the
literature (e.g. Paulling and Rosenberg, 1959; Koo et al., 2004). For this submerged body we have
developed a simple model, with linear hydrodynamics and weakly non-linear geometry, with the aim
of predicting the occurrence of Mathieu-type instability in sway, and this matches the experimentally
observed buoy behaviour quite well.

2 MODEL DERIVATION

The buoyant WEC is attached to the bottom of the tank via a tether, which is pre-tensioned to keep the
device submerged. The tether (together with a winch and a pulley system) also acts as a PTO mechanism.
When excited by incoming waves, the device can respond in 6 degrees of freedom. Thus the forces acting
on the WEC are buoyancy minus self-weight, hydrodynamic forces and PTO forces. Fig. 1 shows a
diagram of the WEC under consideration, assuming a 2D setup.

The net buoyancy force FB = ρV g−mg acts vertically upwards, where ρ is the fluid density, V and
m are the buoy volume and mass, and g is the magnitude of the gravitational acceleration.

The PTO forces (also referred to as tension forces) FPTO act along the tether. For these experiments
the PTO implemented is composed of a pre-tension force, a linear spring restoring force and a linear
damping force, such that

FPTO = C +K∆L+B∆L̇ (1)

where C is the pre-tension term (equal to FB), K is the linear spring coefficient and B is the linear
damping coefficient. ∆L is referred to as PTO extension and denotes the change in tether length (which
corresponds to piston stroke in the full scale hydraulic pump PTO). ∆L̇ is referred to as PTO velocity,
and represents the rate of change of the tether length. PTO extension and velocity can be expressed in

terms of Cartesian buoy motion variables as ∆L =
√

(L+ Z)2 +X2 + Y 2−L and ∆L̇ = XẊ+Y Ẏ+(L+Z)Ż√
(L+Z)2+X2+Y 2

,

where L is the initial/static rope length; X, Y and Z are surge, sway and heave; and Ẋ, Ẏ and Ż are the
respective velocities. Note that for simplicity buoy rotations have been excluded in the above.

We decompose the tension force FPTO into its horizontal and vertical components, using Fig. 1.
Approximate expressions for each FPTO component are also derived using multi-variable Taylor series,
such that terms up to second order have been retained. Hence

FPTOx = FPTO
X√
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L
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XŻ + ... (2)
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(L+ Z)2 +X2 + Y 2
≈ C+KZ+BŻ+
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where the x- and y-directions are identical.
Excluding the buoy rotations, simplified equations of motion are given by

mxẌ = −FPTOx + FWx, mxŸ = −FPTOy, mzZ̈ = −FPTOz + FWz + FB, (4)

where mx = m + m11 and mz = m + m33, with m11 and m33 denoting the added mass in surge/sway
and heave respectively. The FW terms denote (the remainder of) the hydrodynamic forces. As we are
interested in stability, we consider only homogeneous forms of the governing equations, at various orders
of approximation. We thus neglect wave exciting force entirely, and, even though it would ultimately
appear on the left-hand-side of the governing equations, radiation damping.
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Fig. 1: Schematic diagram. For simplicity, only heave and surge shown.

3 LINEARISED MODEL

The governing homogeneous equations can be linearised, by retaining only first order terms from the
Taylor expansions, as follows.

Ẍ +
C

mxL
X = 0 Z̈ +

K

mz
Z +

B

mz
Ż = 0 (5)

To first order the equations are uncoupled. The restoring force in the horizontal directions is due to
buoyancy/pre-tension. The vertical equation contains a linear damping term, whereas the horizontal
motions are un-damped. The natural un-damped angular frequency in surge/sway, and the natural
damped angular frequency in heave are given by

ωnx =

√
C

mxL
ωdz =

√
K

mz
−
(

B

2mz

)2

(6)

Using added mass values from linear potential flow theory we compute the natural frequencies in surge
and heave, and use the former to non-dimensionalise the frequency axis in Fig. 2, which shows the
experimental motion spectra from an irregular waves run, as well as the input wave spectrum. The plots
suggest that the computed values are reasonably accurate.

Clearly the simplified governing equations, given by Equation (5), with sinusoidal incident wave forc-
ing, cannot capture non-linear phenomena such as response period doubling.
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Fig. 2: Wave and response spectra from an irregular wave run.

4 SECOND ORDER MODEL

Retaining terms of up to second order, another set of approximate governing equations can be derived.
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Note that the governing equations are now rather complicated and are coupled again. Here we are con-
cerned with determining stability in the horizontal translations. The sway (or surge) governing equation
contains product terms Y Z and Y Ż. We empirically observe the experimental heave response in regular
waves to be approximately sinusoidal (at the wave frequency ω), as Equation (5) might suggest. The
governing equation for sway may therefore be recast in such a way that it represents an un-damped
mass-spring system, with a constant and a time-varying spring coefficient.

Ÿ +
(
ω2
nx + α cos(ωt+ φ)

)
Y = 0 (9)

This is the classical (undamped) Mathieu equation, and α and φ represent the amplitude and the phase
of the time-varying spring coefficient. Without loss of generality the phase can be chosen to be 0, and the
amplitude expression, in terms of heave amplitude Za, is given below.

α =
Za
mxL

√(
K − C

L

)2
+B2ω2 (10)

We reformulate the equation using ωt = 2τ , such that

Ÿ +
(

4
(ωnx
ω

)2
+ 4

α

ω2
cos(2τ)

)
Y = 0 (11)

where the derivatives are now with respect to τ . Here we adopt the harmonic balance method to find
the stability curves (e.g. Moideen and Falzarano, 2010). This leads to a non-linear algebraic equation in
δ = 4(wnx

w )2 and ε = 2 α
ω2 , which can be solved numerically for a given range of one of the variables.

The calculated stability diagram is presented in Fig. 3a. Regions above the red curves correspond to
unstable solutions, whereas regions below the curves represent stable solutions.

0 2 4 6 8 10 12

/ = 4 (!
nx

/!)2

0

5

10

0 
=

 2
 ,

 / 
!

2

(a) Stability diagram.
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(b) Five regular waves experiments.
Fig. 3: Stability diagram with five regular waves experiments.



We are interested in whether this model is useful in predicting the occurrence of instability in regular
wave experiments. Dots representing the five regular wave experiments conducted are shown in (δ,ε)-space
on the zoomed-in diagram in Fig. 3b. Rather than solving the coupled equations to calculate α, and
hence ε, we use the measured heave amplitude from the experiment. It is seen that points exist in the
stable and unstable regions.

Motion timeseries from the four (out of five) regular waves experiments considered are shown in Fig.
4a to 4d. Note that the equivalent plot from Run 3 is omitted for brevity. It does not exhibit sway
instability, and the motion timeseries are very similar to those from Run 4. It is apparent (particularly
from the sway timeseries) that the stability predictions are correct for Runs 3-7, and the phenomenon of
subharmonic (period doubling) response is clearly seen in Runs 5 and 7. Run 8, which appears on the
stability boundary, is more difficult to comment on.
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(a) Run 4.
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(b) Run 5.
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(c) Run 7.
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(d) Run 8.
Fig. 4: Measured buoy motion from regular waves experiments.

Further experimental data is being obtained to provide additional tests of the theory, and will be
presented at the Workshop. Numerous additions to this investigation are intended, including the addition
of radiation damping, consideration of instability in irregular waves and additional sources of instability
including position-varying exciting force (Eatock Taylor and Knoop, 1981).
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