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1 INTRODUCTION

In order to build reliable models for sea state forecasting it is necessary to understand how the presence of
floating sea ice influences the propagation of ocean waves, and vice versa. Here, and in the following text, the
term “ocean waves” refers to either surface gravity waves in open water, or surface flexural-gravity waves in ice
covered patches of the ocean. The interaction between waves and ice has to be understood on a local scale of
individual ice floes, as well as on a global scale where, e.g., an entire marginal ice zone is simulated.

On the local scale the water body can be described as incompressible, inviscid fluid, while the ice cover is
often approximated as a thin elastic plate or beam (depending on the dimension of the model), see, e.g. Kerr
and Palmer (1972). If one assumes that wave steepness is sufficiently small, the equations governing the water
surface can be linearised around the equilibrium position, which results in a linear scattering theory where
the effect of each individual ice floe on wave propagation is completely described by its scattering matrix (see,
e.g., Squire (2007)). Multiple scattering theory (see, e.g., Montiel et al. (2016)) is often used in an attempt to
make predictions on larger scales on the basis of this local theory. This approach is computationally expensive,
however, as large ensembles of randomly arranged ice floes have to be simulated.

On the global scale one usually considers an energy balance equation, here given in the one-dimensional
form

(∂t + Cg ∂x)I(t, x, k) = Sice + Snl + Setc , (1)

to describe the transport of energy through the field of ice floes, where I(t, x, k) is the wave intensity that
describes the directional rate of flow of energy density, k is the wavenumber, and Cg the group velocity of the
wave (see, e.g., Meylan and Masson, 2006). The terms Sice, Snl, and Setc describe the effect of the sea ice,
non-linearity, and other processes, respectively, and their specific form depends on the particular model that
is considered. The energy balance equation (1) is essentially the Boltzmann equation, as it is known e.g. from
statistical mechanics.

To our knowledge, the precise relation between the local potential flow theory and the global energy balance
models is not well understood, as the energy balance equation is usually derived in a hand-waving manner (see,
e.g., Meylan and Masson (2006) and references therein). In this presentation I will discuss how this missing link
may be established.

2 SURFACE FLEXURAL-GRAVITY WAVES IN VARYING ICE CONDITIONS

Consider an infinite ocean of constant depth H. When in equilibrium, it is bounded vertically by the sea floor
at z = −H and an ice cover at z = 0. The ice is modelled as a thin elastic beam (we work in 1+1 dimensions)
with constant rheological parameters. A train of flexural-gravity waves is travelling at the water–ice interface
in, say, the x-direction. Eventually, we want to describe the evolution of the amplitude envelope of this wave
train when the ice cover thickness h(x) varies in the x-direction. This notwithstanding, in the present abstract
we only consider the case where ∂xh = 0, since the x-dependent case is work in progress.

2.1 Linearised Potential Flow Equations

We begin with the description of water and sea ice on a local scale. As mentioned in the Introduction, we
assume that the water body is an inviscid, incompressible, and irrotational fluid. Therefore, it can be fully
described by a velocity potential φ(t, x, z), which is defined such that the local fluid velocity is its gradient.
Conservation of mass implies that φ satisfies the Laplace equation

(∂2x + ∂2z )φ = 0 , (2)

throughout the fluid domain. At the horizontal boundaries, φ satisfies the conditions

∂zφ = 0 , z = −H , (3)
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at the rigid sea floor, and

∂2x(β h3 ∂2x(∂zφ)) + g ∂zφ+ ρ h ∂2t (∂zφ) + ∂2t φ = 0 , z = 0 , (4)

at the water–ice interface. Here β = G (1 + ν)/(6 ρw), G is the shear modulus of the ice, ν is Poisson’s ratio,
ρ = ρi/ρw, and ρw and ρi are the densities of sea water and sea ice, respectively. The boundary condition (4)
describes the interaction of the water body with the elastic thin beam (see, e.g., Mosig et al. (2015) for details),
and is only valid for waves of modest amplitude.

2.2 Multiple Scale Analysis

As a first step to bridge the local scale and global scale models we perform a multiple scale analysis similar to
that of Mei et al. (2005), §2.4.1. We introduce a dimensionless scaling parameter ε� 1. The velocity potential
φ now depends on the multi-scale variables xn = εnx and tn = εnt, i.e.

φ(t, x, z) −→ φ(t0, t1, . . . , x0, x1, . . . , z) . (5)

We consider waves which are locally time-harmonic with angular frequency ω and wavenumber k, but on larger
spacial and temporal scales their amplitude envelope may vary, that is,

φ(t0, t1, . . . , x0, x1, . . . , z) =
(
ψ0 + εψ1 + ε2 ψ2 + . . .

)
ei (k x−ω t) , (6)

where

ψn = ψn(t1, t2, . . . , x1, x2, . . . , z), n = 0, 1, 2, . . . . (7)

Note that the ψn do not depend on x0 and t0. Substituting this into the Laplace equation (2) and collecting
terms of different orders in ε gives

O(ε0) : Lψ0 = 0 , (8)

O(ε1) : Lψ1 = K1ψ0 , (9)

O(ε2) : Lψ2 = K2ψ0 +K1ψ1 , (10)

where L = (−k2 + ∂2z ), K1 = (−2 i k ∂x1
), and K2 = (−2 i k ∂x2

− ∂2x1
). We perform the same procedure with

the linearised ice / water surface condition (4) and obtain

O(ε0) : Bψ0 = 0 (z = 0) , (11)

O(ε1) : Bψ1 = C1ψ0 (z = 0) , (12)

O(ε2) : Bψ2 = C2ψ0 + C1ψ1 (z = 0) , (13)

where B = (−ω2 +γ ∂z), C1 = (2 iω ∂t1 +2 i ν/ω ∂x1∂z +2 i ρω h ∂t1∂z), and C2 = (2 iω ∂t2 −∂2t1 +2 i ν/ω ∂x2∂z +
3 ν/(ω k) ∂2x1

∂z + 2 i ρω h ∂t2∂z + 2 i ρω h ∂t1∂z). Here we defined the ω and k-dependent quantities

γ = β k4 h3 − ρω2 h+ g , (14)

ν = 2β h3 k3 ω . (15)

Finally, the multiple scale expansion of the sea floor condition (3) is ∂zψn(−H) = 0 for all orders n.
The general solution of the O(ε0) equations is

ψ0 =
g

ω
cosh(k (z +H)) sech(kH)A , (16)

where we chose the normalizing factor to ensure that the unknown amplitude A = A(t1, t2, . . . , x1, x2, . . . ) has
units of length. The local wavenumber k has to be a solution to the dispersion relation

ω2 = k γ tanh(kH) . (17)

To find the solution ψ1 to the first order equations, we subtract ψ1 times equation (8) from ψ0 times (9)
and integrate over z, which gives∫ 0

−H

(
ψ0 Lψ1 − ψ1 Lψ0

)
dz =

∫ 0

−H
ψ0K1ψ0 dz , (18)
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The Fredholm alternative theorem implies that the solution ψ1 can only exist if (18) is satisfied. After applying
Green’s identity the latter becomes[

ψ0 ∂zψ1 − ψ1 ∂zψ0

]0
−H

=

∫ 0

−H
ψ0K1ψ0 dz , (19)

and we can use the horizontal boundary conditions (12) at z = 0 and that ∂zψ1 = 0 at z = −H, and substitute
the general solution (16) of ψ0 to obtain the first order solvability condition

∂t1A+ Cg ∂x1
A = 0 , (20)

where Cg = dω/dk is the group velocity. Equation (20) describes a wave package that moves in x-direction at
the group velocity Cg without changing its shape. If h → 0, equation (20) reduces to the equation found by
Mei et al. (2005).

A similar procedure yields the second order solvability condition

∂tA+ Cg ∂xA =
i

2µ
∂2xA . (21)

where µ−1 = d2ω/dk2. Equation (21) resembles the Schrödinger equation known from quantum mechanics, in a
reference frame moving with a speed Cg. The quantity µ is usually interpreted as an effective inertial mass of a
particle which has a wave function that evolves according to (21). In the limit of a vanishing ice cover (h→ 0)
equation (21) is identical to the result derived by Mei et al. (2005).

3 THE ENERGY BALANCE EQUATION FOR CONSTANT ICE COVER

In the previous section we derived the evolution equation (21) of the wave amplitude A(t, x). Now we want to
convert this into an evolution equation for the wave energy density. This is typically done by introducing the
Wigner transform of A, named after E. Wigner (1932), which is defined as

W (t, x, k) = (2π)−1
∫ +∞

−∞
ei k y A

(
t, x− y/2

)
A∗
(
t, x+ y/2

)
dy , (22)

where A∗ is the complex conjugate of A. Watson and West (1975) have used this technique to derive the energy
balance relation in deep water without an ice cover, but with non-linear terms and taking into account wind
and surface currents. Unfortunately, their deep water equations require that the surface elevation is a smooth
function which will not be the case once we investigate an ice cover that is broken up into multiple floes. A
more general derivation of transport equations for waves in random media has been published by Ryzhik et al.
(1996). Note, that∫ +∞

−∞
W (t, x, k) dk =

∣∣A(t, x)
∣∣2 . (23)

The Wigner distribution W (t, x, k) can therefore be interpreted as (being proportional to) the energy density
of the waves, provided that it is positive definite.

Using (21) and its complex conjugate we can find the energy balance relation for a constant ice cover

(∂t + Cg ∂x)W (t, x, k) +
k

µ
∂xW (t, x, k) = 0 , (24)

where we had to assume that A(t, x)→ 0 as x→ ±∞. Equation (24) is exactly the Boltzmann equation without
forcing or scattering terms. Its left hand side only differs in the term proportional to µ−1 from the left hand
side of the energy balance equation (1) that is typically used.

4 CONCLUSIONS AND FUTURE WORK

Using a multiple scale expansion of the Laplace equation and the linearised interface condition we have derived
a Schrödinger-like equation which describes the time evolution of the amplitude envelope of a flexural-gravity
wave train propagating in the x-direction. We have then used a Wigner distribution to derive the energy balance
equation for this case. We emphasize the appearance of the effective mass µ in this relation, which does not
appear in the energy balance equation that is commonly used by the ocean modelling / sea ice community.
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Preliminary work suggests that when the ice cover thickness h is allowed to depend on x, equation (21) is
amended by a potential term. This potential term would then appear as a scattering term in the energy balance
equation. In this way, we hope to link ice cover inhomogeneities directly to a scattering term in the energy
balance equation. This procedure is well known for other types of waves, as has been demonstrated by Ryzhik
et al. (1996), but, to our knowledge, has never been performed for surface flexural-gravity waves.
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