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1 INTRODUCTION
Moonpools can be found in drillships and some other offshore floating supports. They usually have
vertical walls, from deck to keel. However some moonpools in drillships have ”recesses” (see Figure 1).
The floating production platform MONOBR, proposed by Sphaier et al. (2007), has a large axisym-
metric moonpool with a ”restriction”. Similar restrictions are found in some turrets of FPSOs or
FLNGs (see Molin et al. 2014).

Figure 1: Types of moonpools on drillships (left, taken from Hammargren & Törnblom 2012). The
MONOBR concept (right, taken from Sphaier et al. 2007).

Moonpools are prone to undesirable resonance problems, under outer wave action or forward speed,
and it is desirable, at the design stage, to be able to predict their resonant frequencies. Natural modes
in moonpools consist in the so-called piston mode, up and down motion of the entrapped water, and
in sloshing modes, similar to the sloshing modes in a tank.

Molin (2001) proposed a theoretical frame to derive the resonant frequencies for rectangular moon-
pools with vertical walls. His work was based on some simplifying assumptions: the floating support
is motionless, the waterdepth is infinite, the length and breadth of the support are infinite. The fluid
domain is then decomposed into two parts: the moonpool and a semi-infinite fluid domain below the
keel level. Linearized potential flow theory is used, the velocity potential being written as an eigen-
function expansion in the moonpool. The matching condition with the lower fluid domain is written
as an integral equation relating the potential and its vertical derivative.

In this paper we follow the same procedure, with the moonpool being decomposed into two parts
where different eigen-function expansions are used and need to be matched on the common boundary.
We first consider the axisymmetric case (MONOBR) and we focus on axisymmetric resonant modes.
Then we address rectangular moonpools with one or two recesses.



2. AXISYMMETRIC CASE

Figure 2: Geometry.

The geometry is illustrated in figure 2. The linearized velocity potential Φ(R, z, t) is supposed to
be harmonic in time at a frequency ω: Φ(R, z, t) = φ(R, z) cos(ωt + ψ). The reduced potential φ
verifies the Laplace equation ∆φ = 0, the linearized free surface equation g φz−ω2 φ = 0 at z = d+h,
no-flow conditions at the solid walls and the following matching condition with the lower fluid domain
(see Molin 2001):

φ(x, y, 0) =
1

2π

∫ ∫
S

φz(x
′, y′, 0)√

(x− x′)2 + (y − y′)2
dx′ dy′ (1)

with S the surface of the moonpool R ≤ a.
The interior of the moonpool is decomposed into two rectangular (in cylindrical coordinates) sub-

domains: subdomain 1 for 0 ≤ z ≤ d, 0 ≤ R ≤ a, and subdomain 2 for d ≤ z ≤ h, 0 ≤ R ≤ b.
The following eigen-function expansions apply:

φ1(R, z, θ) = A0 +B0
z

d
+

∞∑
n=1

(An cosh knz +Bn sinh knz) J0(knR) (2)

φ2(R, z, θ) = C0 +D0
z − d

h
+

∞∑
n=1

(Cn coshλn(z − d) +Dn sinhλn(z − d)) J0(λnR) (3)

with J0 the Bessel function and kn, λn the roots of J ′
0(kna) = J ′

0(λnb) = 0.

The bottom boundary condition writes

A0 +

∞∑
m=1

Am J0(kmR) =
1

2π

∫ a

0
r dr

∫ 2π

0

B0/d+
∑

nBnkn J0(knr)√
R2 + r2 − 2Rr cos(θ − α)

dα (4)

Taking advantage of the orthogonality of the set [1, J0(knR)] over [0, a], that is multiplying each
side with R (then RJ0(kmR)) and integrating over the disc, a vectorial equation can be derived:

−→
A = MAB · −→B (5)

with
−→
A = (A0, ...An, ...),

−→
B = (B0, ...Bn, ...).

Matching of φ1 and φ2 on their common boundary, then of their vertical derivatives (together with
enforcing φ2z = 0 for a ≤ R ≤ b, z = d) results into two more vectorial equations

−→
A +DB

−→
B = MC

−→
C (6)

−→
D = MDA

−→
A +MDB

−→
B (7)

with
−→
C = (C0, ...Cn, ...),

−→
D = (D0, ...Dn, ...).



The free surface equation g φ2z − ω2 φ2 = 0 gives

D1
−→
C +D2

−→
D = ω2

(−→
C +D4

−→
D
)

(8)

with D1, D2, D4 diagonal matrices.
From (5) and (6) we get: −→

B = (MAB +DB)
−1MC

−→
C (9)

and then, from (7):

−→
D = (MDAMAB +MDB) (MAB +DB)

−1MC
−→
C = MDC

−→
C (10)

and, from (8), the following eigen-value problem is obtained

(D1 +D2MDC)
−→
C = ω2 (I+D4MDC)

−→
C (11)

with I the identity matrix. The resolution of this eigen-value problem gives the resonant frequencies
ωi and the associated eigen-vectors

−→
Ci. Practically the series are truncated after 10 or 20 terms, which

provides a sufficient accuracy.
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Figure 3: Piston modal shapes for different water heights h. b = 10 m, a = 5 m, d = 1 m.

As an application we take an outer radius b equal to 10 m, an inner radius a equal to 5 m, a
restriction height d equal to 1 m, and we vary the waterheight h in the upper compartment of the
moonpool. Figure 3 shows the modal shapes of the free surface obtained for the piston mode. They
are normalized with a maximum value of 1. It is striking that the maximum wave elevation takes
place at the outer wall, and that, as the waterheight h decreases, the free surface motion gets lower
and lower in the center, down to values near zero.



3. RECTANGULAR CASE

Figure 4: Geometry (left). Moonpool dimensions (from Guo et al. 2017) (right).

Now we consider the rectangular case of a moonpool with one or two recesses, as shown in Figure 4
(left). The moonpool is assumed to be narrow enough that the flow inside can be considered as two-
dimensional. It is straightforward to adapt the procedure presented in the axisymmetric case to the
rectangular case: one just has to replace the Bessel functions J0(knR) and J0(λnR) by cos knx and
cosλn(x+ b) where kn = nπ/a and λn = nπ/(a+ b+ c). For the matching with the lower fluid domain
and deriving the matrix MAB the same routine as in Molin (2001) is used.
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Figure 5: Modal shapes.

Figure 5 shows the modal shapes obtained for the piston mode (mode 0) and for the first two slosh-
ing modes. Their natural frequencies agree fairly well with the values derived from the experiments
of Guo et al. (2016). It is striking that, alike in the axisymmetric case, for the piston mode, the
maximum elevation is obtained in the recess. It is the other way around for the first sloshing mode.
These features are in agreement with the experimental results of Guo et al. (2016).
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