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HIGHLIGHTS

A model for wave interaction with an ice shelf is presented and the theory is developed using Lax-
Phillips scattering. We present results which show that the solution can be found in terms of modes
of vibration which exist as zeros of the scattering matrix.

1 INTRODUCTION

Ice shelves are floating glaciers which form in the Arctic and Antarctic. Recent measurements have
shown that waves generated by storms at distant continental coasts impact Antarctic ice shelves
(Bromirski et al., 2015). Modelling the wave–ice shelf system is hence of considerable importance.
Many of the methods developed in offshore engineering can be applied, especially those developed
in hydroelasticity. Here, we present preliminary results, using a model based on combined shallow-
water and thin-plate theories (e.g. Holdsworth & Glynn, 1978; Sergienko, 2013).

2 Mathematical Model

A shelf of length L and uniform thickness h ≪ L floats on a water cavity of uniform depth H. The
coordinate x denotes horizontal locations along the shelf/cavity, with its origin set to coincide with
the seaward end of the shelf and x = −L denoting the landward end. Open water of depth H exists
for x > 0. As the wavelengths are assumed to be far greater than the water depth and the wave
steepness to be small, the potential satisfies the linear shallow-water equation

∂2
xΦ =

−1

H
∂tη, (1)

where η(x, t) is the elevation of the water surface, and t denotes time. The function Φ(x, t) is the
velocity potential, which satisfies a no-flux condition is applied at the landward end of the cavity

∂xΦ = 0 at x = −L. (2)

The ice-shelf is modelled as a thin–elastic plate, meaning its strain field can be determined from
the displacement function satisfying

D∂4
xη + ρih∂

2
t η + ρwgη = −ρw∂tΦ, −L < x < 0, (3)

ρwgη = −ρw∂tΦ, x > 0, (4)

where the latter is the standard free-surface condition. Here g ≈ 9.81m s−2 is the constant of
gravitational acceleration, ρw ≈ 1024 kgm−3 and ρi are water and ice densities, respectively, and



D = Eh3/{12(1 − ν2)} is the the flexural rigidity of the shelf, where E = 11GPa is its effective
Young’s modulus and ν ≈ 0.33 its Poisson’s ratio. The right-hand side denotes pressure forcing due
to water motion in the cavity. The shelf is clamped at its landward end via the conditions

η = 0 and ∂xη = 0 at x = −L, (5a)

and free at its seaward end, with conditions

∂2
xη = 0 and ∂3

xη = 0 at x = 0. (5b)

At x = 0 we have the equations of continuity, applying the shallow draft approximation

Φ(0−, t) = Φ(0+, t), and ∂xΦ(0
−, t) = ∂xΦ(0

+, t). (6)

A non-dimensionalisation is applied by defining

x̂ =
x

Lc

and t̂ =
t

tc
where Lc =

4

√
D

ρwg
and tc =

√
ρwL6

c

DH
, (7)

are the characteristic length and time, respectively. We write the non-dimensional equations as the
abstract wave equation (following Hazard & Meylan, 2007)

∂2
t η +Aη = 0, (8)

where the operator A is given by
Aη = −∂2

xΨ. (9)

Here Ψ is the negative acceleration potential Ψ = −∂tΦ, which satisfies

−η +Ψ =

{
∂4
xη +M∂2

xΨ (−L < x < 0),
0 (x > 0),

(10)

where M = ρihH/ρwL
2
c . The operator A is self-adjoint and positive in the Hilbert space given by

⟨η, η′⟩H = ⟨η, η′⟩[0,∞] + ⟨∂2
xη, ∂

2
xη

′⟩[−L,0] (11)

where

⟨η, η′⟩[a,b] =
∫ b

a

η (η′)
⋆
dx. (12)

and the star denotes complex conjugate.

3 SCATTERING MATRIX AND LAX-PHILLIPS THEORY

We assume that all terms are proportional to exp(−iωt) and that the solution for x > 0 has the
form

η = e−ikx +R(ω)e−ikx, (13)

where k = ω in our non-dimensional case. The reflection coefficient, R, is the scattering matrix in
this system. The solution in the ice-shelf/cavity interval is

∂6
xΨ+ (1−Mω2)∂2

xΨ+ ω2Ψ = 0 (14)

which can be solved exactly giving six unknowns. The value of these and the coefficient R are found
by the seven boundary conditions. This method goes back to Stoker (1957).



Figure 1: Visualisation of the scattering matrix R(ω) in the complex plane using the method of
Wegert (2012). The colour represents the phase and the hue is proportional to the logarithm of the
modulus. Rapid changes occur around the poles and zeros.

The problem can be described by the scattering theory of Lax & Phillips (1989) as was outlined
in Meylan (2002). To apply Lax-Phillips scattering the following conditions are required: (i) the
incoming and outgoing subspaces are orthogonal; and (ii) the incoming subspace spans the entire
space under temporal evolution. These conditions are met by our system. Many consequences
follow when Lax-Phillips scattering applies. The most significant is that the semi-group formed by
the restriction of the temporal evolution operator to the subspace in the ice-shelf/cavity interval has
point spectra with the same values as the singularities of the analytic extension of the scattering
matrix R(ω). This in turn allows the solution to be given in terms of modes of vibration as for a
self-adjoint operator.

4 RESULTS

We consider typical values for an ice-shelf and compute the analytic extension of the scattering
matrix (or reflection coefficient). Figure 1 shows the analytic extension of the scattering matrix (or
reflection coefficient) for L = 40 km, H = 200m and water depth h = 300m. The pattern of zeros
and singularities at complex conjugates leads to the scattering matrix having the form of a Blaschke
product. The green circle and square identify two of the singularities at ω = 0.0092 − 0.0052i and
ω = 0.0216−0.0039i, and the red circle and square identify the corresponding zeros at ω̄. Associated
with each of these singularities/zeros are modes that form a biorthogonal system in which the solution
can be expanded. The mode shapes associated with the singularity at ω = 0.0092− 0.0052i and at
ω = 0.0216− 0.0039i are given in Figure 2. Further results will be presented at the workshop.
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Figure 2: The mode shape associated with the singularity at ω = 0.0092 − 0.0052i, shown in
Figure 1 by the green circle (left-hand plot) and mode shape associated with the singularity at
ω = 0.0216− 0.0039i, shown in Figure 1 by the green square (right-hand plot).

5 CONCLUSIONS

We have shown that a simple model for wave–ice shelf interactions leads to interesting results with
important geophysical applications. We hope this work will motivate further study, especially the
development of sophisticated hydroelastic models (e.g. Sergienko, 2010) including more realistic
geometries.
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