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1 INTRODUCTION
Within the frame of linear potential theory, a generalized multi-modular model composed of multiple elastic

plates floating on the stratified ocean with multiple-layer fluids is derived. For the case of multiple plates, the
well-developed methods in the literatures, e.g., Fox and Squire (1990, 1994) and Sahoo et al. (2001), will not
be applicable. We will use a set of vertical eigenfunctions of free-surface waves to make inner products and
obtain convergent numerical results. By the virtue of this method, the impact of ocean stratification on the inner
forces of floating elastic plates is discussed via comparing a 4-layer fluid model with an 8-layer one.

2 MATHEMATICAL FORMULATION
We consider a generalized situation that N finite elastic plates with variable properties floating on a M -

layer fluid, which can be seen as a multi-modular very large floating structure (VLFS) on the stratified ocean.
The subscripts n = 1, 2, · · · , N and m = 1, 2, · · · ,M are applied to mark each single plate and fluid layer,
respectively. The elastic plates are continuously placed on the right side of the z-axis, as shown in Fig. 1. The
length and midpoint of the n-th plate are assigned with 2Ln and (cn, 0). The flexural rigidity and the mass per
unit length are denoted by Dn and Mn. The positions of every matching boundary from left to right are denoted
by x = a0, a1, a2, · · · , aN−1, aN , where a0 = 0. The density and thickness for the m-th layer are given by ρm
and hm, and then every interface as well as the seabed are located at z = −Hm = −(h1 + · · ·+ hm).
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Fig. 1: Flexural–gravity wave scattering by multiple elastic plates floating on the stratified fluid with multiple layers

2.1 POTENTIAL FUNCTION
The linear potential theory is employed for this problem. With focusing on a specific frequency ω, the wave

motion can be described by a velocity potential ϕ(x, z, t) = ℜ[Φ(x, z)e−iωt], where Φ(x, z) is the spatial
potential function. In the whole fluid domain, Φ(x, z) obeys the governing equation of ∇2Φ(x, z) = 0.

The boundary conditions on the surface, every interface and bottom are formulated for −∞ < x < +∞ as
follows:
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where g is the gravitational acceleration, γm = ρm/ρm+1 and K = ω2/g. For the free surface areas, Dn and
Mn vanish.

2.2 METHOD OF SOLUTION
By substituting the general solution of Laplace’s equation into the boundary conditions, the vertical eigen-

function V (k, z) can be deduced, which is a piecewise one with respect to every fluid layer:

V (k, z) = Am cosh k(z +Hm) +Bm sinh k(z +Hm), (−Hm < z < −Hm−1), (5)

where Am and Bm are the coefficients relaying on the matrix iterative equations as follows:(
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with AM = cosh−1 kHM , BM = 0; k for wave numbers, m = 1, · · · ,M − 1, tm = tanh khm, and εm =
1− γm. The dispersion relation for every region is denoted by
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where Cn = kFn−KGn, with Fn = Dnk
4/ρ1g+1, Gn = Mnk/ρ1 for each elastic plate region and Fn = 1,

Gn = 0 for the free surface regions;
∏

m is the multiplication sign of m = 1, 2, · · · ,M − 1 for the matrixes.
For a given ω, the wave numbers can be sought out empirically. For the elastic plate region, we can find 2M real
roots ±k̃n,0m (m = 1, 2, · · · ,M ), two couples of complex conjugates ±ik̃n,j (j = I, II) and infinite numbers
of pure imaginary roots ±ik̃n,j (j = 1, 2, · · · ) from Eq. (7), while for the free surface regions, we can find 2M
real roots ±k0m (m = 1, 2, · · · ,M ) and infinite numbers of pure imaginary roots ±iki (i = 1, 2, · · · ).

The potential function should be separated for every region as

Φ(x, z) =
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where the components, according to relevant wave numbers, are expressed via
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with ξm for the amplitudes of incident waves; i = 1, 2, · · · , j = I, II, 1, 2, · · · . Along every boundary between
different regions (x = a0, a1, · · · , an, · · · , aN ), the potential expansions must satisfy the matching conditions
as follow:
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The inner product method is employed for the M -layer fluid case and is defined as follows:

⟨U(z), V (z)⟩ =
M∑

m=1

ρm
ρM

∫ −Hm−1

−Hm

U · V dz, (17)

where U(z) and V (z) represent arbitrary vertical eigenfunctions; for m = 1, H0 = 0. Considering that the
free-surface waves can be regarded as a limiting case from the flexural–gravity waves, we attempt to employ
the vertical eigenfunctions of free-surface waves to make inner products for Eqs. (16). For this multiple layer
case, an orthogonal relation between Zp(z) and Z̃n,q(z) is derived, which can help to transfer the inner product
to an explicit differential expression:
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Truncating the potential expansions in Eqs. (9)–(13) at i = j = S and taking the vertical eigenfunctions
of free-surface waves Zp(z) (p = 01, 02, · · · , 0M , 1, 2, · · · , S) to make an inner product for each matching
boundary, a matrix equation for the unknown coefficients is obtained as
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are (M + S) diagonal matrixes. According to Xu and Lu (2010), the inner
products in these matrixes will be orthogonal for different wave numbers. For the same wave number, the
diagonal elements are
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αR0 , αTN+1
, β, and βx are (M + S) dimensional column vectors; αTn and αRn are (M + S + 2) dimen-

sional column vectors; the elements in these vectors are αR0 = [R0,01 , · · · , R0,0M , R0,1, · · · , R0,S ]
⊺, αTn =

[Tn,01 , · · · , Tn,0M , Tn,I, Tn,II, Tn,1, · · · , Tn,S ]
⊺, αRn = [Rn,01 , · · · , Rn,0M , Rn,I, Rn,II, Rn,1, · · · , Rn,S ]

⊺,
αTN+1

= [TN+1,01 , · · · , TN+1,0M , TN+1,1, · · · , TN+1,S ]
⊺, β = [−I0,01P(01), · · · ,−I0,0MP(0M ), 0, 0, · · · ]⊺,

βx = [k01I0,01P(01), · · · , k0M I0,0MP(0M ), 0, 0, · · · ]⊺.
Additional connection conditions are yet requested to complete a closed equation system for the calculation.

For the generalized situation, four ideal connection conditions can be found at every joint between adjacent
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plates, and two ideal connection conditions can be found at each free edge. As a typical illustration, we use
rotational springs with torsional rigidity Jn as connecting type to elaborate the process, then, associating with
Eq. (19), 2(M + S)(N + 1) + 4N simultaneous equations for 2(M + S)(N + 1) + 4N unknown coefficients
are established and the generalized problem can be solved afterwards.

3 DISCUSSIONS
Let ρ1, HM and

√
HM/g be respectively the characteristic quantities of density, length and time to transfer

the problem to a nondimensionalized system. In order to study the impact of stratification on the mechanical
behavior of a group of floating elastic plates, we try to use a parabolic curve as the approximation for the
variation of density versus depth in the upper fluid areas and use a constant to denote a uniform layer below.

The density ρm versus the depth Hm−1 (m = 1, · · · ,M ) follows the parabolic function of

ρm = −4.76σH2
m−1 + (σ + 0.2)Hm−1 + 1, (σ = −0.2, 0, 0.2) , (25)

where a parameter σ is used to simulate the profile of the curve. After taking several discrete points on the
curve, we employ a 4-layer and an 8-layer fluid for the calculation. In the process, the 4-layer fluid is separated
by the constants h1 = h2 = h3 = 0.07 and h4 = 0.79, while the 8-layer fluid is by h1 = · · · = h7 = 0.03 and
h8 = 0.79. Other parameter configurations are N = 4, D1 = · · · = D4 = 0.05, M1 = · · · = M4 = 0.0001,
L1 = · · · = L4 = 2, J1 = J2 = J3 = 0.05, and ω = 0.2. In order to avoid the interference of internal waves,
we assume the incident waves propagate only in a surface traveling mode, namely let ξ1 = 0.01 and the other
ξn = 0.
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Fig. 2: Amplitude of shear force affected by different density distributions in a 4-layer fluid.

Figure 2 shows the calculation results for the amplitudes of shear force in the 4-layer case. A conspicuous
variation is exhibited for the values along the whole structure, especially at the middle area of every single plate
and the neighborhoods nearby the connections, which has been plotted in the subgraphs. The changing tends to
be more intense in the 8-layer fluid. The ocean stratification will generate significant impact on the shear forces
inside the elastic plates, especially in the position nearby the rotational springs.

4 CONCLUSIONS
We investigate a generalized VLFS–wave interaction model with multiple elastic plates floating on the strat-

ified fluid of multiple layers, where the numbers of the plates as well as the layers can be arbitrary. Within the
frame of linear potential theory, the inner product technique is used to deal with the matching relations. We
introduce the vertical eigenfunctions of free-surface waves to make an inner product. Under this definition,
an orthogonal relation with an explicit differential term is proposed. Investigations on the impact of stratified
fluids are performed. For a floating structure with specified total length, we try to employ a parabolic curve
to approximate the pycnocline in the ocean, where numbers of discrete points are drawn out as representatives
for the density of every layer. The numerical results show the shear force will be greatly affected by different
stratifications, which is a hypostatic distinction from a uniform fluid.
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