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Introduction
Seakeeping in the present context means essentially the classical diffraction radiation problems with and
without forward speed and the maneouvering. The current trends in the seakeeping simulations seem to
be more and more oriented to the use of the RANS based CFD methods instead of the more classical
potential flow methods. There are several reasons for that among which the inclusion of the nonlinear
effects and the effects of the forward speed are probably the most important ones. Indeed, due to the
very complex behavior of the free surface for large amplitude waves the potential flow methods have
enormeous difficulties to model the associated nonlinear effects, especially when the wave breaking oc-
curs. In addition, the problem of seakeeping with the forward speed also introduce the huge difficulties
so that the fully consistent potential flow solution, even linear, based on the Boundary Integral Equation
(BIE) technique is still missing. On the other hand, it must be recognized that the CFD methods be-
came nowadays very efficient allowing for quite accurate evaluation of the ship seakeeping characteristics
for very general operating conditions. There are however some important technical difficulties, related
to the use of the CFD methods, and they are not exclusively related to the large CPU time require-
ments. Among these difficulties there are few of them which require particular attention. The first one
is the mesh generation which might quickly become very complex and expensive. Indeed, contrary to
BIE methods for potential flow where only the wetted surface of the body need to be discretized, in
CFD simulations the whole fluid domain should be modelled using the 3D discretisation. This makes
the proper verification of the results, in terms of stability and convergence, very complex so that quite
often the proper convergence studies are missing and simply the resuts with the finest possible mesh are
taken as the good ones. Another important difficulty is related to the correct propagation of the waves
which are one of the most important aspect of the seakeeping. This includes both the incident waves
and the perturbed waves generated by the body-fluid interactions. Within the CFD community, it looks
like there is a common belief that everything can be solved by increasing the computational domain and
refining the mesh. For the potential flow community this is certainly not seen as the wisest choice and the
introduction of some physical aspects of the wave propagation should be made. Indeed, increasing the
CFD domain and refining the mesh will not necessarily lead to the improved wave propagation model but
will certainly increase the CPU time significantly. On the other hand, the potential flow methods are able
to propagate the waves in a very efficient manner at least when the linear wave model is justified, which
is usually true far from the body. However, the potential flow methods suffer from important numerical
difficulties when the problem becomes highly nonlinear, which usually happens close to the body. All this
suggest that combining the RANS and the potential flow methods might be the best approach to exploit
the advantages of both methods. The main purpose of this paper is to discuss those hybrid methods.
Lot of work has been already done on the subject but it looks like there is still large room for significant
improvements. Within the context of seakeeping simulations, the questions we should ask ourselves are:
Will the far field behavior of the wave system influence the local pressure/stress distribution at the body?
Is it enough to artificially damp the wave system using some numerical tricks or it is necessary to properly
simulate the waves in the whole fluid domain? What is the optimal size of the CFD domain? Can we
reduce the CFD domain if we treat the waves more physically?

RANS based CFD numerical models
There are different numerical methods which can be used to solve the RANS equations. Any of those
methods requires a limited fluid domain which is then discretized in 3D using the different numerical
approaches (e.g. finite volumes, finite elements, finite differences...). Here we concentrate on the finite
volume method implemented in the open-source software OpenFOAM R⃝. In OpenFOAM R⃝, the RANS
equations are discretized in space using the arbitrary polyhedral cells. The basic unknown quantities



are the local fluid velocity u, pressure p and the position of the free surface. The numerical schemes in
space and time can be of different types (first, second or higher order, explicit, implicit, semi-implicit ...)
but most of them end up with the iterative procedure at each time step during which the field equation
together with the various boundary conditions are satisfied at a certain level of accuracy. Due to the
fact that the physical domain is infinite the numerical model should stop somewhere in the fluid and
the special end condition should be applied at those boundaries. In order to not apply this condition
abruptly, the blending (also called relaxation) zones are usually employed (see Figure 2) in such a way
that this condition is applied in a smooth manner. Physically the radiated waves travel very far from the
computational domain and in principle this effect should somehow be taken into account.

Potential flow models and wave propagation
The most comprehensive way to understand the different wave systems is to assume the ideal linear
potential flow in frequency domain. These simplifications do not consider some physical effects (e.g.
viscosity, rotationality ...) but keeps the main aspects of the wave generation and propagation. The
main unknown in the potential flow model is the velocity potential φ from which all other quantities
(e.g. pressure, velocity...) can be deduced. The Fourier representation of surface waves generated by the
oscillating disturbance moving at constant speed U , gives the analytical expression of the propagative
wave components φw in the form of the single integrals over the different dispersion curves (e.g. see [2]):

φw = −i
∑
D=0

∫
[sign(Df )+ sign(ξDα + ηDβ)]A exp[−i(αξ+βη)]/||∇D||dS , D = (f −Fα)2 − k (1)

where f is the non dimensional encounter frequency f = ωe

√
L/g, F is the Froude number F = U/

√
gL,

k is the local wave length k =
√
α2 + β2 and A is the amplitude function related to the singularity

distribution at a given surface (body or other control sufaces) as it will be discussed later.
Depending on the nondimensional number τ = fF , different dispersion curves exist as shown in Figure
1. The distance from the origin to one point at the dispersion curve defines the local wave number k and
we can easily understand that the wave length (λ = 2π/k) can vary in between zero and the wave length
related to the closest distance in between the closed dispersion curve and the origin. This fact gives rise
to very complex wave systems as the ones shown in Figure 1. One of the main numerical difficulties in
CFD methods is related to the correct representation of these wave systems. Let us also note that, for
the case with no forward speed F = 0 the dispersion curve is represented by a circle around the origin
and only one wave length exists λ0 = 2π/k0 with k0 = f2, giving purely circular wave system.

Figure 1: Different dispersion curves (symmetric about α axis) and the wave system associated with the
closed dispersion curve around origin (ring waves) and with the right open dispersion curve (V waves).

It is important to understand that, whatever the body characteristics (shape, mass distribution...), the
wave system will always be defined by the same expression (1) and only the complex ampitude A will
change. This amplitude can be calculated from the distribution of the velocity potential φ and the normal
velocity ∂φ/∂n at a given surface, using the Green’s theorem.
At this stage it is important to mention that the above analysis was made for frequency domain potential
flow method while we will need the potential flow solution in time domain because most of the RANS
method are formulated in time domain. Clearly, the basic principles of the wave propagation remain the
same in frequency and time domain and the same wave systems is generated after the transition phase. In
order to take the full advantage of the potential flow model here we propose to consider the linear model
based on the use of the Kelvin type time domain Green’s function (the one which satisfies the linearized
free surface condition) which will allow for consistent wave propagation far from the body. Within this
method the velocity potential can be expressed in the following form (e.g. see [1]):



4πΦ(x, t) = −
∫∫
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[Φ(t)G(0)
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∫ t

0

dτ
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g

∫ t

0

dτ

∫
ΓP

{Φ(τ)[Hττ (t− τ)− UHτξ(t− τ)]−Hτ (t− τ)[Φτ (τ)− UΦξ(τ)]}n1dl (2)

where U is the forward speed in x direction, G(0)(x; ξ) is the impulsive part of the Green’s function and
H(x; ξ, t− τ) is the memory part of it. The subscripts in the above equation denotes the derivatives, and
the space dependence of the different quantities in the right hand side is ommitted for clarity. Note also
that, for the sake of clarity, the corresponding boundary value problem for the potential Φ was defined
using the so called uniform flow approximation which is not mandatory and more complex linearizations
could be employed.
What is important to understand from the above representation is that if we know Φ,Φn,Φτ ,Φξ at the
surface SP at each time instant (see Figure 2), we can calculate the velocity potential (and other quanti-
ties) at any point in the fluid. This fact is crucial for the coupling with the CFD code because it allows
the calculation of the flow quantities in the interaction zone without solving the BIE.

Coupling
There are different important aspects of the coupling which should be considered together. In order
to clarify the different methods it is useful to introduce the concepts of the domain and the solution
decompositions. In Figure 2 the basic concept of the domain decomposition method is presented. In the
left part of the figure, the original problem which we want to solve (floating body in waves) is presented
and in the right part of the figure the problem is decomposed in different domains. The physical quantity
which we are looking for is denoted by q and it can be any quantity such as pressure, velocity, wave
elevation ... The Navier Stokes quantities are denoted by qNS and the potential flow quantities by qPF .
The Navier Stokes domain is the domain represented by the quadrilateral mesh while the potential flow
domain is represented is limited by the free surface and the control surface SP .

Figure 2: Basic configuration (left - original physical problem, right - domain decomposition).

The basic principles of the coupling are rather simple and intuitive: we calculate the different quantities
using the different numerical methods in their respective domains and we make them match to each other
in the interaction zone. This interaction zone, represented in gray color in Figure 2, can be any part of
the fluid domain in which both solutions are defined. The choice of this interaction zone as well as the
choice of the Navier Stokes domain and the potential flow domain should be made with greatest care.
In addition to the domain decomposition it is useful to decompose the total solution into two parts:

qNS = qNS
0 + qNS

1 , qPF = qPF
0 + qPF

1 (3)

where q0 denotes the known quantity and q1 the unknown quantity. The main idea behind this decom-
position is to numerically calculate only those quantities which are not known and include explicitely the
quantities which are known (analytically or other). In that sense qNS

0 and qPF
0 represent the same known

quantity expressed in the different way. This decomposition was first introduced in [3] , and is known
under the name SWENSE (Spectral Wave Explicit Navier Stokes Equations) decomposition.
The relaxation of the RANS solution to potential flow solution is performed in the blending zone in
a rather natural way by using the simple blending function w(x). With the above defined solution
decomposition (3) we can formally write:

[1− w]T (qNS) + wP(qPF ) = 0 (4)



where w(x) is a smooth function equal to 0 at the begining of the blending zone and 1 at the end of the
RANS domain. The operator T stands for the RANS operator (transport equation, continuity...) and
P stands for the potential flow operator (BIE representation, Bernoulli equation...). It is also possible
to apply the blending procedure directly on the quantities qNS and qPF which leads to so called explicit
blending. It should also be noted that the blending function w(x) could also be chosen to be time depen-
dent in which case the blending is dynamic and this might possibly help in relaxing the RANS solutions
more efficiently when and where the difference in between the solutions is larger. In any case the main
goal of the blending remains the same i.e. extracting the wave part of the solution, and we should accept
that this can be achieved only approximately.

Discussions
In the first attempts of the CFD methods to solve the seakeeping problem, the wavemaker was used for
wave generation at one side of the domain and the total solution was damped to zero at the other side
which, in fact, represents the direct simulation of the wave tank. This was probably the simplest approach
to implement but certainly not the wisest one. Most popular methods nowadays [4], generate the waves
through the blending zone where the solution qNS is relaxed either to zero (qNS

0 + qNS
1 → 0) either to

incident wave qNS
1 → 0. The main idea of the present work is to, instead of relaxing the perturbation

part to zero or to incident wave, relax it to the solution given by the potential flow theory where the
characteristics of the potential flow are given by the distribution of Φ,Φn,Φτ ,Φξ at the control surface
(2).

Figure 3: Relaxation of the RANS solution to different outer solutions (left - 0 , right - potential flow).

In Figure 3 we present two typical cases of relaxing the RANS solution toward the different outer flows.
The main goal of the present studies is to quantify how the different blending methodologies affect the
local solution at the body. Hopefully, relaxing the RANS solution toward the more realistic outer solution
will allow for significant reduction of the CFD and blending domains size leading to important reduction
of the overall CPU time. In order to be able to perform the above described coupling, several critical
points need to be solved. Among them we can mention the following: deduction of the velocity potential
and its derivatives from the RANS solution, separation of the potential and non-potential parts of the
RANS solution, relaxation of the non-potential part, consistency of the linearization and the accurate
evaluation of the potential flow, choice of the control surface for potential flow model (2) and many others.
All these issues will be discussed at the Workshop in the context of the pure incident wave propagation in
2D and the nonlinear wave diffraction by vertical circular cylinder which are the problems for which the
semi-analytical linear and higher order potential flow solutions are available for benchmarking purposes.
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