
The 32nd International Workshop on Water Waves and Floating Bodies, Dalian, China, 23-26 April, 2017. 

A Comparative Study of Probabilistic Models for Second-Order Hydrodynamic 

Responses of Offshore Platforms 

Dong-Hyun Lim, *Yonghwan Kim 

Department of Naval Architecture and Ocean Engineering, Seoul National University, Seoul, Korea 

*yhwankim@snu.ac.kr 

1 INTRODUCTION 

Nonlinear hydrodynamic responses generally exhibit non-normal statistical behaviors, which complicates the 

prediction of response statistics. However, in many cases, a nonlinear hydrodynamic quantity can be 

represented in a two-term Volterra series if the dynamic problem is properly simplified. In this case, some 

analytic techniques can be applied to estimate the probability distribution of the nonlinear response. 

Representative examples are the sum-frequency vertical resonant vibration observed in tension-leg platforms 

(TLPs), and the horizontal slow-drift motion of moored floaters. 

In this study, the Hermite-moment method by Winterstein (1988) is compared to the analytic formulation by 

Kac and Siegert (1947). Also, the probability distribution of response peaks for the two-term Volterra series 

with general bandwidth is derived. Aforementioned two examples of the second-order hydrodynamic 

responses are considered: the high-frequency springing motion and the slow-drift motion of a TLP. 

2 MATHEHMATICAL FORMULATION 

A second-order hydrodynamic response Y(t) to a unidirectional random wave X(t) can be represented in a 

two-term Volterra series with corresponding frequency-domain transfer functions. In a discretized form, Y(t) 

is expressed as: 
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where Aj and ωj are the complex amplitude and the frequency of j-th discretized wave component, and H1(ωj) 

and H2(ωj, ωk) are the LTF (linear transfer function) and the QTF (quadratic transfer function), respectively. 

As shown by Kac and Siegert (1947), Y(t) can be expanded with independent standardized Gaussian variates 

Wj(t) as follows: 
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In the equation above, SX(ω) is the one-sided power spectrum of X(t), and λj and ψj are the eigenvalue and the 

eigenvector of the following integral equation: 
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The characteristic function and the PDF (probability density function) of Y(t) are then given by: 
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Meanwhile, in the Hermite-moment method, Y(t) is transformed to a standard normal process U(t) by 

following Hermite-polynomial expansion: 
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where mY and σY are the mean and the standard deviation of Y(t), and Hen is the nth order Hermite 

polynomial. The coefficients κ, ĥ3 and ĥ4 are determined by matching the statistical moments of Y(t) up to 
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fourth order. Detailed equations and the approximate solutions of those coefficients can be found in Yang et 

al. (2013). 

For the two-term Volterra series Y(t), the statistical moments used in applying the Hermite-moment method 

can also be analytically computed with aforementioned eigenvalues and eigenvectors. The nth cumulant kn of 

Y(t) is given by (Langley, 1987): 
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where δij indicates the Dirac delta function. Then, the nth moment can be estimated by the relation of 

moments and cumulants. 

The probability distribution of peaks of Y(t) can be derived from that of the standard normal process U(t). 

The PDF of peaks for U(t) is given by: 
2 2 2

2

2

1 21

2 22 2 2

0 4

1
ˆ ( ) 1 , 1

2

u u u
s

U

m
p u e ue e ds

m m



   



  


    

 
 
  

                              (8) 

where mn is the nth spectral moment of U(t). To estimate the bandwidth parameter ε, the second and fourth 

spectral moments of U(t) are required. These can be derived from the following two equations relating the 

spectral density of Y(t) and U(t): 
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where SY(ω) and SU(ω) are the spectral density of Y(t) and U(t), respectively, and [SU(ω)]n in Eq. 10 indicates 

the n-fold convolution of SU(ω). The equations for the first four spectral moments of U(t) are then derived as: 
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where mY,n indicates the nth spectral moment of Y(t). Finally, the PDF of peaks of Y(t) is given by: 
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3 THE COMPUTATIONAL MODEL 

The computational model used for the simulations is a TLP with 12 tendons and risers. Fig. 1 represents the 

configuration of the TLP and the coordinate system for describing the platform motion, and Figs. 2 and Fig. 

3 represent the transfer functions for the heave and surge, respectively. The transfer functions were computed 

with a commercial software WADAM. 
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Fig. 1 The configuration of the TLP model 

 
Fig. 2 Linear motion RAO (left), sum-frequency heave motion QTF (middle), and difference-frequency surge 

motion QTF (right) 

4 THE COMPARISON TEST RESULTS 

Two test conditions were constructed to investigate accuracy and applicability of the probabilistic models. In 

the first condition, termed Case 1, combined linear and sum-frequency heave motion is considered. The 

significant wave height HS and the spectral peak period TP were set to 6.0m and 12.0s, which induces linear 

and second-order motions comparable to each other. This results in a lower degree of kurtosis compared to 

the second-order resonance condition, but higher spectral bandwidth is induced. In the second condition, 

termed Case 2, combined linear and difference-frequency surge motion is investigated. An extreme wave 

condition with 12.0m of HS and 16.0s of TP was selected, which induces a strongly non-Gaussian and wide-

banded surge motion. Details of each condition are summarized in Table 1. 

Table 1 The simulation conditions and corresponding response statistics  

 Mode HS (m) TP (s) Skewness Kurtosis Bandwidth 

Case 1 Heave 6.0 12.0 0.0 3.20 0.62 

Case 2 Surge 12.0 16.0 0.44 3.68 0.93 

Fig. 3 represents the PDFs of each motion in Case 1 and Case 2. A noticeable feature of the result is that the 

Hermite-moment method slightly overestimates the PDF around the tail in Case 1, while this tendency is not 

observed in Case 2 where the non-Gaussianity is stronger. This is quite a counter-intuitive feature 

considering that the Hermite-moment method is based on the transformation of Y(t) to a standard normal 

process U(t). Hence, it is inferred that accuracy of the Hermite-moment method does not necessarily 

decrease with increasing non-Gaussianity. However, the discrepancy is minor, and both of the probabilistic 

models exhibit great prediction of the sampling result. 
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Fig. 3 The PDFs of the heave motion in Case 1 (left) and the surge motion in Case 2 (right) 

Fig. 4 represents the exceedance probability distributions of response peaks in Case 1 and Case 2. From this 

figure, it is identified that the Hermite-moment model for general bandwidth (Eqs. 8~12) predicts the 

probability distribution of peaks with great accuracy. From negative peaks to the extreme ones, sampled 

peaks lie very close to the present prediction, whereas the result neglecting the bandwidth effect considerably 

overestimates the probability level. This discrepancy significantly affects the accuracy of fatigue damage 

estimation from the peak distribution. Fig. 5 represents the relative fatigue damage rate in the riser closest to 

the motion center estimated from the peak distribution with and without consideration of the bandwidth. 

Benasciutti (2004) was referred for the formulation of the rainflow fatigue damage from the peak distribution. 

It is observed that the present model predicts the fatigue damage rate with a very high degree of accuracy, 

while the prediction neglecting the bandwidth effect results in great overestimation. 

    
Fig. 4 The exceedance probability distributions of peaks in Case 1 (left) and Case 2 (right) 

 
Fig. 5 The relative fatigue damage rate in the riser closest to the motion center 

5 CONCLUSIONS 

The Kac-Siegert method and the Hermite-moment method have been compared for predicting the 
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probabilistic behaviors of the second-order motions. The motion PDFs are predicted with high accuracy by 

both methods, but the Hermite-moment method may result in slight discrepancy when non-Gaussianity is 

mild, which is counter-intuitive. The probability distribution of response peaks considering the bandwidth 

effect has been derived and validated. The fatigue damage in the case of large bandwidth can be successfully 

estimated from the derived peak distribution. 
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