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1. INTRODUCTION
An asymptotic analysis of capillary-gravity ship waves associated with a point perturbation

is performed via establishing the relationship between dispersion curves on the Fourier plane
and the corresponding wave pattern on the free surface. By using this relationship, far-field
waves, ray-angles and phase & group velocities are determined in an explicit and simple way.
Besides the speed threshold cmin ≈ 0.2313 m/s below which waves cannot be generated, another
critical speed cfan ≈ 0.4484 m/s associated with the constitution of wave systems is obtained
through studying inflection points along the dispersion curve. Behaviours of wave pattern and
ray-angles for different velocities across the critical speed cfan are investigated. Finally, a 2-point
wavemaker model is adopted to investigate the interference between bow and stern waves.

2. STATEMENT OF THE PROBLEM AND DISPERSION RELATION
A 3D coordinate system OXY Z steadily travelling with the ship at a speed c is defined with

the XY plane coinciding with the undisturbed free surface and the OZ axis orienting positively
upwards. Here, the reference length L and the gravitational acceleration g are used to define
nondimensional coordinates (x, y, z), Fourier variables (α, β, k) and velocity potential φ as:

(x, y, z) =
1

F 2L
(X, Y, Z) ,

(
α, β, k =

√
α2 + β2

)
= F 2L (A,B,K) , φ =

Φ

F 2
√
gL3

(1)

where F denotes the Froude number defined as F = c/
√
gL. The characteristic wavenumber

of capillary waves is KT =
√
ρg/T [4] while the one for pure-gravity ship waves is KG = g/c2,

so that the parameter σ associated with the surface tension effect is the ratio of both [2]:

σ = KG/KT =
√
T/(ρgL2)/F 2 (2)

where T is the air-water interface tension T ≈ 0.073 N/m; and ρ denotes water density ρ = 1000
kg/m3. Then, the linear free-surface condition is:

φxx + φz + σ2φzzz = 0 on z = 0 (3)

By making Fourier transform to the free-surface condition, we can obtain the dispersion
relation:

D = α2 −
√
α2 + β2 − σ2

(
α2 + β2

)3/2
= k2 cos2 θ − k − σ2k3 (4)

with (α, β) = k(cos θ, sin θ). Dispersion curves defined by D = 0 are symmetrical with respect
to α = 0 and β = 0. In the quadrant α ≥ 0 and β ≥ 0, dispersion curves are defined by:{

kG = 2/(cos2 θ +
√

cos4 θ − 4σ2) as k ≤ kσ

kT = (cos2 θ +
√

cos4 θ − 4σ2)/(2σ2) as k ≥ kσ
(5)

with kσ = 1/σ. In (5), kG denotes the wavenumber of gravity-dominant waves, and kT repre-
sents the wavenumber of waves where the capillarity plays a dominant role following [2]. The
dispersion curve is closed and confined in the region:

0 ≤ |θ| ≤ θσ with θσ = arctan
√

(1− 2σ)/(2σ) (6)

with σ ≤ 0.5. When σ > 0.5, θσ does not exist, nor does the dispersion curve. At σ = 0.5 with
the corresponding speed cmin ≈ 0.2313 m/s, the dispersion curve reduces to an isolated point
at (α, β) = (2, 0) and θσ = 0 according to (6) which means that all waves disappear. Therefore,
waves cannot be generated as the travelling speed c is less than the critical speed cmin.



3. FAR-FIELD WAVES AND RAY-ANGLES
Far-field waves are determined by stationary points of the phase function ϕ = xα+ yβ, and

the stationary-phase relation is:

ϕ′ = xα′ + yβ′ = 0 with α′ = dα/dk and β′ = dβ/dk (7)

which gives rise to (−x, y) ∝ (β′, α′). Following [6], far-field waves are associated with the
dispersion curve D = 0. Differentiating D = 0 with respect to k yields:

D′ = Dαα
′ +Dββ

′ = 0 (8a)

D′′ = Dαα
′′ +Dαα(α′)2 + 2Dαβα

′β′ +Dββ(β′)2 +Dββ
′′ = 0 (8b)

Combining (7) and (8a), we have the following formulation:

xDβ − yDα = 0 = h‖∇D‖ sin (ϑ− γ) with (x, y) = h (cos γ, sin γ) (9)

where ϑ is the angle between the unit vector normal to the dispersion curve and α−axis:

(cosϑ, sinϑ) = (Dα, Dβ) /‖∇D‖ (10)

Formulation (9) holds only when ϑ = γ or ϑ = γ + π. Hence, we can get the geometrical
relationship between dispersion curve and the corresponding wave pattern which states that a
point on the dispersion curve generates waves in the direction parallel to the normal direction
of the dispersion curve. Introducing formulation (9) into the phase function ϕ = xα + yβ, we
can obtain the crestlines along which the phase ϕ is constant:

(xn, yn) = ϕn
(Dα, Dβ)

αDα + βDβ

with n = 1, 2, · · · (11)

where the sequence of phase is defined as [1]: ϕn = −2nπ ·sgn(α2Dα+αβDβ). The wave pattern
is usually located between two cusps or asymptotes of a sector symmetrical about x−axis, and
the angle between each cusp or asymptote and x−axis is determined by the inflection point
along the dispersion curve requiring ϕ′′ = 0 [4]. Introducing (8b) into ϕ′′ = 0 gives rise to:

ϕ′′ = 0 = δ
√
α′2 + β′2 h (α′ cos γ − β′ sin γ) / sin 2γ (12)

where the curvature δ is defined by

δ = (2DαDβDαβ −D2
αDββ −D2

βDαα)/‖∇D‖3 (13)

The vanishing of ϕ′′ occurs only at inflection points at δ = 0 which is equivalent to:

3σ6k6 − 6σ4k5 + 23σ4k4 − 12σ2k3 + 9σ2k2 + 2k − 3 = 0 (14)

The value of σ located in the interval [0.0, 0.5] determines the number of roots of (14). When
σ is small (slightly greater than 0.0), there are two different inflection points (α1, β1) and (α2, β2)
corresponding to two cusp angles γ1 and γ2 called as gravity cusp angle and capillary cusp angle
baptized by Moisy & Rabaud [5]. With increasing σ, there is a critical value σ = σfan ≈ 0.1331
(travelling speed is c = cfan ≈ 0.4484 m/s, and wavenumber is k = kfan ≈ 2.0764) at which
two inflection points coincide and γ1 = γ2. When σ is larger then σfan, no inflection point
exists. Besides cusp angles associated with inflection points along the dispersion curve, the
point (ασ, βσ) separating the dispersion curve into gravity-dominant and capillarity-dominant
components corresponds to an asymptote angle designated as γσ which is expressed as:

γσ = π/2− θσ = π/2− arctan
√

(1− 2σ)/(2σ) (15)

The asymptote angle γσ separates the gravity-dominant and capillarity-dominant waves. In
(15), the asymptote angle γσ is equal to 0 at σ = 0 which means that no capillary-dominant
waves exist, and it equals to π/2 at the critical value σ = 0.5 with the corresponding speed



c = cmin ≈ 0.2313 m/s. In addition, the phase velocity ~vp and group velocity ~vg can also be
determined by the dispersion relation and they are given by [4]:

~vp = − (α, β) f/k2 and ~vg = − (∂f/∂α, ∂f/∂β) = −0.5 (Dα, Dβ) /α (16)
where f denotes the circular frequency which is zero here (stationary wave pattern in the trans-
lating frame of reference), and it means that the magnitude of the phase speed is zero. However,
we may determine the direction that the phase propagates by letting f = 0+. Therefore, the
directions that the phase and energy propagate are associated with the wavenumber vector
(α, β) and the vector normal to the dispersion curve (Dα, Dβ), respectively.

4. RESULTS AND DISCUSSIONS
Figure 1 including 3 subfigures presents the dispersion curve along which gravity is dominant

on the Fourier plane and corresponding crestlines and ray-angles of far-field waves for different
values of σ. In addition, the directions that phase and energy propagate are also illustrated.

Subfigure (a) depicts the case of σ = 0.04 < σfan, at which there are two different inflection
points along the dispersion curve corresponding to the gravity cusp angle γ1 and capillary
cusp angle γ2 on the physical plane. The gravity-dominant dispersion curve is divided by two
inflection points into three portions corresponding to three wave systems. The first bifurcation
k ≤ k1 =

√
α2
1 + β2

1 corresponds to transverse waves in the region of 0 ≤ γ ≤ γ1. The

second bifurcation confined in k1 ≤ k ≤ k2 =
√
α2
2 + β2

2 is associated with the divergent waves
contained within the gravity cusp line and capillary cusp line γ2 ≤ γ ≤ γ1. The third one
subjected to k2 ≤ k ≤ kσ corresponds to the fan waves appearing between the capillary cusp
and asymptote in the region of γ2 ≤ γ ≤ γσ.

In subfigure (b) where σ = σfan ≈ 0.1331, two inflection points coincide resulting in γ1 = γ2
which means that divergent waves contained in γ2 ≤ γ ≤ γ1 disappear. The dispersion curve
along which gravity is dominant is divided by the coalesced inflection point into two portions
corresponding to two wave systems on the free surface including: transverse waves in the region
of 0 ≤ γ ≤ γ1 and fan waves contained in γ1 ≤ γ ≤ γσ, which are joint together. In subfigure
(c) where σ = 0.16 > σfan, there is no inflection point and cusp angles γ1 and γ2 do not exist.
A remarkable feature is that transverse waves and fan waves appearing in subfigures (a) and
(b) are merged to form a new wave system contained in the region of 0 ≤ γ ≤ γσ, and we refer
to this new wave system as ”transverse-fan waves”.

In Fig. 1, fan waves are found to extend to infinity. Indeed, the point on the dispersion curve
corresponding to the point on the free surface at infinity is (ασ, βσ). Associated with this point,
the wavenumber vector is tangent to the dispersion curve, and thus we have (α, β) · (Dα, Dβ) =
0 = αDα+βDβ which indicates that the corresponding point of crestlines on the physical plane
is at infinity, according to (11). Crestlines of this wave system associated with different phases
are nearly parallel and straight. For this reason, we call this wave system as ”fan waves”.

The foregoing study is concerned with the wave pattern generated by a point perturbation.
However, practical observations of ship wakes are significantly narrower than Kelvin’s angle
[8] which is caused by the interference between waves created by bow and stern of a ship.
To investigate the interference, two models are put forward including: a pressure patch with
Gaussian distribution [3] and the 2-point wavemaker model [7] yielding laws of F−1 and F−2 at
high Froude numbers, respectively. In the light of slender features of a ship, we adopt the latter
one. Here, only downstream gravity-dominant waves interference is accounted for. Following
[7], the constructive interference occurs at:

` cos θ

F 2L
=
λ

2
=
π

2

(
cos2 θ +

√
cos4 θ − 4σ2

)
(17)

where ` denotes the effective distance between bow and stern, and one commonly used empirical
value is ` = 0.9L [7]. Figure 2 demonstrates the apparent wake angle varying with the Froude
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Figure 1: Gravity-dominant dispersion curve and corresponding wave crestlines as well as cusp or
asymptote of capillary-gravity waves for different σ. (a): σ = 0.04; (b): σ = 0.1331; (c): σ = 0.16.

number F and comparison is made with the experimental observations by Rabaud & Moisy [8]
as well as the pure-gravity solution by Noblesse et al [7]. When the Froude number is greater
than 0.3, the influence of the surface tension effect on the apparent wake angle is insignificant
and there is no obvious difference from the pure-gravity solution. As the Froude number is less
than 0.3, the wake angle of capillary-gravity ship waves is larger than the Kelvin’s angle and
the surface tension effect can expound the observations that exceed the Kelvin’s angle limit.
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Figure 2: Wake angle varying with the Froude number. Comparison is made between theoretical
predictions by the 2-point wavemaker model [7] and experimental observations [8].
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