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1 INTRODUCTION 
There has been an increasing interest in Arctic engineering due to possible new routes for shipping and 
sources for resource extraction. In such a case, the water surface is covered or partly covered by ice. A 
typical case is that a water channel opened up by an icebreaker, in which a strip of water surface is confined 
between two semi-infinite ice sheets. The Green function which satisfies the boundary conditions on the free 
surface and ice sheet is less straightforward to obtain than the free surface only problem (Wehausen & 
Laitone, 1960) or the ice cover only problem (Sturova, 2013). Usually it is obtained from the matched eigen 
function method. Different series are used in sub-regions. The unknown coefficients are found by imposing 
continuity condition on the interface. Sturova (2015) solved the problem for the Green function with two ice 
sheets of zero draught. This was then used for a submerged body in polynya and only the body surface 
discretization was needed. The Green function problem would have to be resolved for a different polynya or 
a different ice sheet thickness.  
Therefore, the hybrid method proposed by Yeung & Bouger (1979) for the free surface flow problem is 
reintroduced in this work for problems in polynya. Eigen function expansion method will be used below the 
ice sheets while the Rankine source will be used in the open water region. Matching condition will be 
imposed on the interface to ensure the flow and pressure continuity. The effectiveness of the hybrid method 
will be illustrated by two typical cases: an elliptic cylinder submerged in polynya and a rectangular body 
floating on polynya. 

2 MATHEMATICAL MODEL 

 

 
Fig. 1. Definition of the coordinate system and sketch of the problem. 
We consider the problem of wave interaction with a body submerged or floating on polynya between two 
semi-infinite ice sheets, as shown in Fig. 1. The width of the body at still water surface and its draught are a  
and b  respectively. A Cartesian coordinate system O xz  is defined, with the x-axis along the undisturbed 
mean free surface, and the z-axis pointing vertically upwards. The fluid with density   and constant depth 

H is assumed to be inviscid, incompressible and homogeneous, and its motion to be irrotational. Thus the 
velocity potential   can be introduced to describe the fluid flow. The ice sheet, which begins from jx  to 
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infinity, is modelled as a continuous elastic plate with uniform properties, i.e. thickness jh , draught jd , 

density j , Young’s modulus jE , Poisson’s ration j . Here the subscripts j  1, 2 denote the left and 

right hand side ice sheets respectively.  
Based on the linearized velocity potential theory for sinusoidal motion with frequency  , the total potential 
can be written as  
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where 0  contains incoming potential I  and diffracted potential D , 0  is the amplitude of the incident 

wave; i  ( i  1, 2, 3) is the radiation potential due to body oscillation in mode i  with complex amplitude 

i . The potentials i  should satisfy the Laplace’s equation throughout the fluid, or 
2 = 0i , ( i  0, 1, 2, 3) (2) 

The linearized free surface boundary condition in region 3  is  
2

, = 0i i zg    , ( 1 2x x x  , 0z  ) (3) 

where g  is the acceleration due to gravity. In regions 1  and 2 , the boundary condition on the ice 

sheet is given as (Squire et al., 1995) 
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where 3 2/ [12(1 )]j j jL Eh    and j j jm h   are the effective flexural rigidity and mass per unit area of 

the ice sheet, respectively. On the vertical surface of the ice sheet edge, the impermeable condition provides 
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Similarly, the condition to be satisfied on the body surface is  
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where 1 2( , )n n n


 is the unit normal vector pointing into the body, 3 1 2( ') ( ')n z z n x x n     is the 

component related to the rotational mode about y -axis pointing into the paper, with ( ', ')x z  as the 

rotational centre. The seabed boundary condition is 
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The radiation condition far away from the body is given as 
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where , 1p q   if p q  and , 0p q   if p q , (1)
0  and (2)

0  are the purely positive imaginary roots 

of the corresponding dispersion equations in regions 1  and 2  respectively. 

3 NUMERICAL PROCEDURE 
To conduct the numerical procedure, the fluid domain is divided into three sub-regions: the ice-covered 
regions 1 ( 1 : 1x x   , 1H z d    ) and 2 ( 2 : 2x x   , 2H z d    ) and the free surface 

region 3 ( 3 : 1 2x x x  , 0H z   ). The velocity potential in region j  is denoted as ( )j
i , which will 

be solved by the following matching method. 

3.1 Eigenfunction expansion in regions 1 and 2 
In the ice-covered regions 1  and 2 , the velocity potential is written in terms of the corresponding 

eigenfunctions. We have 



The 32nd International Workshop on Water Waves and Floating Bodies, Dalian, China, 23-26 April, 2017. 

(1) (1)
0, ,

2
i i I i m m

m

R   




   , (2) (2)
,

2
i i m m

m

T 




    (10) 

where 0, 1i   if 0i   and 0, 0i   otherwise,  
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with sgn( ) 1jx x   if 0jx x   and sgn( ) 1jx x    if 0jx x  . In Eq. (11), ( )j
m  are the roots of 

the corresponding dispersion equations (Fox & Squire, 1994). Following Ren et al. (2016) and using the 
Green’s second theorem over the boundary iS  of i , we have 
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The last terms in the right hand side of Eqs. (12) and (13) will depend on the condition at the ice edge. 
Without loss of generality, we may assume the free edge which gives 
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3.2 Boundary integral equation in region 3 
In the closed region 3 , using the Green’s second identity, we have  
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where 1 2( , ) ln(1 / ) ln(1 / )G p q r r  , 2 2
1 ( ) ( )r x z      and 2 2

2 ( ) ( 2 )r x z H       are the 

distance between the field and the source point, and the distance between the field point and the mirror of the 
source point with respect to seabed respectively. The continuity of the potential and its normal derivative are 
then imposed on the interface of sub-domains.  

4 NUMERICAL RESULTS 
We shall use dimensionless variables based on a ,   and g . It should be noted that the numerical results 

are obtained by taking 2m M   in the summation Eq. (10) as the up limit, and 0N , FN  segments on 

the body surface and free surface respectively. We first consider the problem of an elliptic cylinder 
submerged in polynya. This case was studied by Sturova (2015) through the source distribution method 
together with the Green function satisfying the boundary conditions on the free surface and ice sheet. Fig. 2 
shows the radiation force against dimensionless wave number  . We can see that the results agree well with 
those of Sturova (2015). Computations are then carried out for a rectangular body floating on polynya. The 
semi-analytical solutions for this problem was given by Ren et al. (2016) via the matched eigen function 
expansion method. Fig. 3 presents the corresponding wave exciting force, and good agreement with the 
results of Ren et al. (2016) is obtained. More detailed results will be presented at the workshop. 
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Fig. 2. Radiation force with different M , 0N  and FN . Solid lines: results in Figs. 4 and 5 of Sturova (2015); 

dashed lines: 70M = , 0 = 90N  and = 180FN ; open circles: = 100M , = 1800N  and = 360FN . ( = 1a , 

= 0.5b , ( ', ') = (0, -1)x z , = 25H , 1 2= - = -2.5x x , 1 = 0.025h  and 2 = 0.1h , 1 = 0d  and 2 = 0d , 

1 = 0.0225m  and 2 = 0.09m , 1 = 0.0356L  and 2 = 2.2791L ) 

 
Fig. 3. Wave exciting force with different M , 0N  and FN . Solid lines: results in Fig. 6 of Ren et al. (2016); 

dashed lines: = 70M , 0 = 90N  and = 180FN ; open circles: = 100M , 0 = 180N  and = 360FN . ( = 1a , 

= 0.5b , ( ', ') = (0, - / 2)x z b , = 10H , 1 2= - = -5x x , 1 2= = 0.1h h , 1 2= = 0.09d d , 1 2= = 0.09m m , 

1 2= = 4.5582L L ) 


